
AO-Ai53 988 SPECIFICATION OF SOFTWARE QUALITY ATTRIBUTES VOLUME 1i /
FINAL REPORT(U) BOEING AEROSPACE CO SEATTLE WA
T P BOWEN ET AL. FEB 85 Di82-ii678-i

UNLSSIFIED RADC-TR-85-37-VOL-i F38682-82-C-BH37 F/G 9/2 NI.

mhLROE ES -EshmhhI
mhEmhEEEEmhohI
mhohhohEEmhEEI
smmhhhmhhEohEEE
EhEEEohEEmhhhI
mEEmhohEEEmhEE

I1. 2.212~
L

IIII .

*.. flf1. 25 l1ll'11.4 1.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF SIANOAROS 1963A

Ii

, •~

C -;,

RADCTR8537, Vol I (of three)
Final TcnalReport
February 1985

AD-A 153 988

SPECIFICA TION OF SOFTWRE
QUALITY ATTRIBUTES

Boeing Aerospace Company

DTIC
ELECTE

* Thomas P. Bowen, Gary B. Wigi. and Jay T. Tsi S MAY

B

0 APPROVED FOR PUBLIC RELEASE; DISRIBUTION UIIIED

Co.

ROME AIR DEVELOPMENT CENTER
* ~ Air Force Systems Command

Griffiss Air Force Base, NY 134415700

8 5 4 23 207

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-85-37, Volume I (of three) has been reviewed and is approved
for publication.

APPROVED:

ROGER B. PANARA
Project Engineer

APPROVED:

RAYMOND P. URTZ, JR.
Technical Director
Command & Control Division

/1 -1 .. - ,-

FOR THE COMMANDER:

DONALD A. BRANTINGHAM/
Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COEE) Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

0 . . . ,. .. ' : ,,.? -i _

UNCLASS,7F TFI
SECU14ITY CLASSIFICATION OF THIS PAGE

-' REPORT DOCUMENTATION PAGE
is REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UCLASSIFIED N/A

2. SEC,_RITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION,AVAiLABILITY OF REPORT

N/A Approved for public release; distribution

N/ EASI CTODONRDNSCDUEuimtd

A ERFORMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBERISI

1)182- 116 78-l1 RADC-TR-85-37,Voi I (of three) -

6a NAME OF PERFORMING ORGANIZATION [~b, OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Bouiji Aero~space Company j If apDhiablei Rome Air Development Center (COEE)

6 c, ADDRESS (City. State and ZIP Code) 7b. ADDRESS IC.ty. State -nd ZIP Coati

Sea.t ooxA 982 Griffiss AFB NY 13441-5700

So. NAME OF FUNDING/SPONSORING 8bM. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENT:FICATION NUMBER
ORGANIZATION j Ifll Icable, 3628--13

Rome Air Development Center COEE 06182C13

* & ADDRESS FCiy. State and ZIP Codel 0O SOURCE OF FUNDING NOS.

*Criffiss AFB INY 13441-5700 EEETN O O

11 TITLE I IIude Security Claiatficationl
S SPECIFICATION OF SOFTWARE QUALITY ATTRIBUTES

12. PERSONAL AUTHOR(S)
*Thomas P. Bowen, (;ary B. Wigle, Jay T. Tsai

13..TYPEOF RPORT13b.TIMECOVEED 7 A. DATE OF REPORT lY,. Mo.. Day) 1S. PAGE COUNT'.
Final FROM Aug 82 TOOt8 Feray18 122 4

* 16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUB3JECT TERMS eContinIue on etierse if neceuiia,- and identify by block num~ber)

*FIELD GROUP SUBOR Software Quality
*09 02 Software Quality Metrics

19. ABSTRACT 'ConlInue on reverse if necessary and identify by block nuanberp

* Volumne I (of three) describes the results and presents recommendations for integrating the
RI)C developed software quality metrics technology into the Air Force software acquisition

* managemlent process and for changing Air Force acquisition documentation. In addition,..
chlanges to the baseline software quality framework are presented and features of a proposed
,pecification methodology are summarized. Terminology and life cycle phases are consistent

* with the December 1983 draft of the DOD-STD-SDS, Defense System Software Development.

Volu~me 11 (of three) describes how the software acquisition manager specifies software
- qIualitv ceqllirements, consistent withl needs. Factor interrelationships, tradeoff among

factor qu1-ality leivel~s in terms of relative costs and an example for a command and control
* application -ire described. Procedures for assessing compliance with the specified require-

meiit-a ha-sed 11n an analvsis of data collected using procedures described in volume III are
4 inclutdedl.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEDIUNLIMITED .. SAME AS RPT X DTIC USERS E UNCLASSIFI El

22. NAME OP RESPONSIBLE INDIVIDUAL 22b TELEPHONE NU MBER 22c OFFICE SYMBOL
'includir a, Code,rRoger B. Panara (315) 330-4b54 RADC (COEE)

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

?-A '.J-

UNCLASS IFIED

SECURITY CLASSIFICATION OF TI4IS PAGE

VolIuune I1I1 (o f thiree) des cribes rroc d urOS an11d tL ichn1 [(I]ICS for e~v.a ~ 10 ,1 W ich jVkd (I I,.1 I
c eve I. 1Workshieets for use in metr ic dataL~ c-o 1 I ect ion by -o !tiwire ereIcpiie n

scorcsneets for scoring, cach fac tor ark' prov idd-1

DTICSMAY 2 21985J

B ,,

SIECURITY CLASSIFICATION OF THIS PAG~E

PREFACE

This document is the first of three volumes of the Final Technical Report (CDRL-

A004) for the Specification of Software Quality Attributes contract. F30602-82-C-

0137. Contract work was performed by Boeing Aerospace Company (BAC) for Rome

• -Air Development Center (RADC) to provide methods, techniques, and guidance to Air

" Force software acquisition managers who specify the requirements for software - L

quality.

The purpose of this contract was to (I) consolidate results of previous RADC contracts
dealing with software quality measurement, (2) enhance the software quality

framework, and (3) develop a methodology to enable a software acquisition manager to

determine and specify software quality factor requirements. We developed the

methodology and framework elements/to focus on an Air Force software acquisition

manager specifying quality requirements for embedded software that is part of a

command and control application. This methodology and most of the framework

elements are generally useful for other applications and different environments.

The Final Technical Report consists of three volumes:

a. Volume 1, Specification of Software Quality Attributes-Final Report.

b. Volume II, Specification of Software Quality Attributes-Software Quality

Specification Guidebook.

c. Volume III, Specification of Software Quality Attributes-Software Quality

Evaluation Guidebook.

Volume I describes the results of research efforts conducted under this contract,

including recommendations for integrating quality metrics technology into the Air

Force software acquisition management process, recommended changes to Air Force

software acquisition documentation, and summaries of software quality framework

* changes and specification methodology features.

0 _Volumes II and III describe the methodology for using the quality metrics technology

and include an overview of the software acquisition process using this technology and

* ithe quality framework. Volume II describes methods for specifying software quality

requirements and addresses the needs of the software acquisition manager. Volume III

U ..

-I

-'......."..-.-

describes methods for evaluating achieved quality levels of software products and

addresses the needs of data collection and analysis personnel.

Volume II also describes procedures and techniques for specifying software quality

requirements in terms of quality factors and criteria. Factor interrelationships,

relative costs to develop high quality levels, and an example for a command and

control application are also described. Procedures for assessing compliance with

specified requirements are included.

Volume III also describes procedures and techniques for evaluating achieved quality

levels of software products. Worksheets for collecting metric data by software life-

cycle phase and scoresheets for scoring each factor are provided in the appendixes.

Detailed metric questions on worksheets are nearly identical to questions in the

Software Evaluation Reports proposed as part of the Software Technology for

Adaptable Reliable Systems (STARS) Measurement data item descriptions (DID).

Terminology and life-cycle phases used in the guidebooks are consistent with the

December 1983 draft of the Department of Defense software development standard

(DOD-STD-SDS) (e.g., the term computer software configuration item (CSCI) is used

rather than computer program configuration item (CPCI)).

-6:

i ~~~~~~~~~~~~~ " -i•.-'.'.- " . -'. . . -... ." ,

-'. " .'. *. . " . ..". '. -- . - . " * - .*-'. * *...' . . ---. . -. . .- .. - ". . -. .

wJ

CONTENTS

Page1

1.0 EXECUTIVE SUMMARY 1-1

1.1 Overview of Contract Results 1-I

1.2 Objectives 1-2

1.3 Background 1-3

1.4 Technical Approach 1-3

1.5 Task Approach and Accomplishments 1-5

1.6 Conclusions 1-11

2.0 ROLE OF QUALITY METRICS IN THE SOFTWARE 2-1

ACQUISITION PROCESS

2.1 Software Acquisition Process 2-3

2.1.1 System Acquisition Life Cycle 2-3

2.1.2 Software Development Cycle 2-5

2.1.3 Life-Cycle Relationships 2-7

2.1.4 Software Acquisition Management 2-8

2.1.5 Verification and Validation 2-9

-. 2.1.6 Quality Assurance 2-11

. 2.2 Quality Metrics 2-13

* -2.2.1 Framework 2-15

2.2.2 Quality Specification 2-15

2.2.3 Quality Monitoring 2-22

2.3 Software Acquisition Using Quality Metrics 2-23

2.4 Implementing Quality Metrics 2-31

2.4.1 Near-Term Implementation 2-31

2.4.2 Long-Term Implementation 2-32

2.5 Potential Benefits and Problems 2-35

2.5.1 Benefits 2-35

2.5.2 Problems 2-36

3.0 QUALITY METRICS FRAMEWORK 3-1

3.1 Software Quality Factors 3-3

-ill- . -'

6.'..

Page

3.1.1 Factor Definitions and Rating Formulas 3-5

3.1.1.1 Description 3-5

3.1.1.2 Changes 3-11

3.1.2 Quality Factor Interrelationships 3-13

3.1.3 Quality Factor Relationships to Life-Cycle Phases 3-13

3.2 Software Quality Criteria 3-13

3.2.1 Description 3-13
3.2.2 Changes 3-15

3.3 Software Quality Metrics 3-15

3.3.1 Description 3-15

3.3.2 Changes 3-18

3.4 Metric Worksheets 3-21

3.4.1 Description 3-21

3.4.2 Changes 3-23

3.5 Factor Scoresheets 3-26

3.5.1 Description 3-26

3.5.2 Changes 3-27

3.6 References 3-27

4.0 QUALITY METRICS METHODOLOGY 4-1

4.1 Overview 4-I

4.2 Features 4-5

5.0 VALIDATION PLAN 5-1

6.0 RECOMMENDED REVISIONS 6-1

6.1 Review and Recommendation Process 6-1

6.2 Review Analysis 6-3

6.3 Detailed Recommended Changes 6-5

6.3.1 DOD-STD-SDS 6-5

6.3.2 DI-S-X101 System/Segment Specification 6-7

6.3.3 DI-R-XI05 Software Quality Assurance Plan 6-7

6.3.4 DI-E-XI07 Software Requirements Specification 6-7

-iv-

A

Page

6.3.5 DOD-STD-SQS 6-8

6.3.6 MIL-STD-1521B 6-8

6.3.7 AFR 800-14 6-9

6.3.8 Guidebooks 6-10

Appendix A-Metric Worksheets A-I

- .Appendix B-Factor Scoresheets B-I

-Appendix C-Software Quality Evaluation Report C-I

FIGURES

Page

1.3-1 Software Quality Model 1-4

1.5-1 Task Flow Diagram 1-6

1.5-2 Quality Metrics Technology-Life-Cycle Model 1-8

1.5-3 Software Quality Measurement Methodology 1-10

2.1-1 System Acquisition Life-Cycle Phases and Decision Points 2-2

2.1-2 Software Development Cycle 2-4

2.1-3 Life-Cycle Relationship between the System and the 2-6

Operational Software

2.1-4 Relationship of Software Development and V&V 2-10

2.1-5 Software QA Function 2-12

2.2-1 Performance Factor Attributes 2-17

2.2-2 Design Factor Attributes 2-18

2.2-3 Adaptation Factor Attributes 2-19

2.3-1 Software Acquisition Quality Metrics Functions 2-24

2.3-2 Air Force Acquisition Relationships Involved in 2-25

Quality Metrics Functions
2.3-3 Recommended Responsibilities and Relationships for the QM 2-26

Specification Function

2.3-4 Recommended Responsibilities and Relationships for the QM 2-30

Monitoring Function

2.4-1 Relationship between Product Divisions and DACS 2-34

3.1-1 Rat;ing Estimation and Rating Assessment Windows 3-6

4.0-1 Software Quality Specification and Evaluation Process 4-2

4.0-2 Flow of Software Quality Requirements 4-4

-vi-

.. . - . . .0. .' .- . -. : ' .

:.-' . - -..-- -....-.' .,-.- . -. " -.- . . . - -..,,.. ..-..- - - -..'. . ..

TABLES

Page

2.2-1 Quality' Concerns 2-16

2.2-2 Software Quality Factor Interrelationships 2-20

2.3-1 Organizational Evaluation 2-28

3.1-1 Software Quality Factor Definitions and Rating Formulas 3-4

3.1-2 Quality Factor Ratings 3-7

3.2-1 Software Quality Factors and Criteria 3-12

3.2-2 Quality Criteria Definitions 3-14

3.3-1 Quality Metrics Summary 3-16

3.4-1 Metric Worksheet/Life-Cycle Correlation 3-22

3.4-2 Software Development Products 3-24

6.1-1 Candidate Documents 6-2

6.3-1 Documentation Recommended for Revision 6-6

U 4:

-Vii"-

.

IY

GLOSSARY

AFCMD Air Force Contracts Management Division -jj

AFCL Air Force Logistics Command

AFPRO Air Force Plant Representative Office

AFSC Air Force System Command

AMT Automated Measurement Tool

APSE Ada programming support environment

ASD Aeronautical Systems Division

BAC Boeing Aerospace Company

CDR critical design review

CPCI computer program configuration item

CSC computer software component

CSCI computer software configuration item

DACS Data and Analysis Center for Software

DAE Defense Acquisition Executive

DID data item description

DOD Department of Defense

DOD-STD-SDS Department of Defense software development standard

DOD-STD-SQS Department of Defense software quality standard

DRC Dynamics Research Corporation

ESD Electronic Systems Division

FCA functional configuration audit

FSD full-scale development

HOL high order language

I/O input/output

IV&V independent validation and verification

OPR Office of Primary Responsibility

PCA physical configuration audit

PDR preliminary design review

QA quality assurance

QM quality metrics

RADC Rome Air Development Center

SD Space Division

-viii-

6T-T

SDR system design review
SPO System Program Office ... Lo
SSR software specification review

STARS Software Technology for Adaptable Reliable Systems

S/W software

TRR test readiness review

V&V verification and validation

ix

.2

-l

• -ix-

..........................

1.0 EXECUTIVE SUMMARY

Work described in this document was performed by Boeing Aerospace Company (BAC)

for Rome Air Development Center (RADC), Griffiss Air Force Base, New York, under *1

the Specification of Software Quality Attributes contract, F30602-82-C-O137. In this

section, contract results are summarized, contract objectives are outlined, background

information is provided, the technical approach to achieving objectives and major

accomplishments are summarized, and several conclusions are explored.

" 1.1 OVERVIEW OF CONTRACT RESULTS

BAC extended and enhanced RADC quality metrics (QM) technology into a form usable

by an Air Force software acquisition manager. RADC QM technology work began in

1976 as an effort to extend Quality Assurance (QA) beyond an administrative checklist

@ type of activity to include quantitative considerations of software quality. This was

achieved through the two processes of QM technology: (1) specifying software quality

requirements in terms of quality factors (e.g. reliability, maintainability) and (2)

periodically evaluating achieved quality levels throughout software development.

These two processes are complementary in that periodic measurements enable a

comparison with specified requirements.

The Air Force acquisition manager specifies software quality requirements

concurrently with technical performance and design requirements, after consultation .

with user and logistics personnel. Procedural steps in the QM methodology guide the

acquisition manager in developing software quality requirements and in making trade-

off decisions that include quality considerations. Trade-off techniques include

relative cost considerations for factor qualities over the system life cycle, the relative

importance of factors and factor attributes, and the feasibility of achieving quality

levels for specific factor considerations.

Points in the software development cycle at which quality levels are measured and --

reported coincide with review and audit points specified in the proposed Department

of Defense standard for software development (DOD-STD-SDS). Source materials for

data collection are data item descriptions (DID) identified in DOD-STD-SDS.

I -

* "4x

. -. .i i, ' .. .' *,. .. - - . -.- .. . -: . .

., Measurements are, for the most part, consistent with those being specified in the

Software Evaluation Report DIDs for Software Technology for Adaptable Reliable ,1

Systems (STARS). A system for reporting measurement data and results provides

timely feedback to the acquisition manager and enables decision making and

corrective action early in the development cycle for issues that may adverseiy affect

cost and schedule.

QM technology has matured beyond the research stage and is ready for the test of use

by acquisition managers. Procedural steps in the methodology have been documented

in two guidebooks-one for specification and one for evaluation.

1.2 OBJECTIVES

Primary objectives for this contract were (1) to develop a methodology to enable a

software acquisition manager to determine and specify software quality factor

* requirements and (2) to enhance the software quality framework. The methodology for

determining and specifying quality factor requirements is focused on an Air Force

acquisition manager procuring embedded software that is part of a command and

control application. The software quality framework consists of the software quality

factors, attributes of those factors (criteria and metrics), and the mechanisms (e.g.,

forms, tables, worksheets, and scoresheets) provided to enable specifying quality

factor requirements and evaluating achieved quality levels.

Another objective for this contract was to prepare the QM technology for possible use
by Air Force product divisions in acquiring new products. This involved defining an

approach to integrating this technology into the Air Force software acquisition

management process and ensuring that the technology elements were consistent with

current Department of Defense (DOD) concepts. For example, life-cycle phases and

terminology used in the quality metrics technology should be consistent with DODD

5000.1 and DOD-STD-SDS.

Another objective for this contract was to prepare a plan for validating the

specification methodology to ensure its usability within software acquisition

management.

1-2

.". .-.-.. , i !. .

1.3 BACKGROUND

There has been a recent increased awareness of critical problems encountered in
developing large-scale systems involving software. These problems include cost and
schedule overruns, high cost sensitivity to changes in requirements, poor performance

of delivered systems, high system-maintenance costs, and lack of reusability.

The government (DOD in particular), as a customer for large-scale system
developments, has sponsored efforts to address these problems. For example,
development of Ada programming language, Ada programming support environments
(APSE), proposed standards for software development (DOD-STD-SDS) and software

quality (DOD-STD-SQS), the STARS program, the proposed STARS measurement DIDs,

and various development aids and tools. These all provide partial solutions.

Since 1976, RADC has pursued a program intended to achieve better control of

software quality. Through a series of related contracts, this program has sought to
identify key software quality issues and to provide a valid methodology for specifying

software quality requirements for software developed as part of major Air Force
weapon systems and for measuring achieved quality levels of software products
released incrementally during the software life cycle. A quality model was established
(see Fig. 1.3-1) in which a hierarchial relationship exists between a user-oriented

quality factor at the top level and software-oriented attributes at the second and third
levels (criteria and metrics, respectively). Software quality is measured and predicted

by the presence, absence, or degree of identifiable software characteristics.

The Final Technical Report for this contract consisting of the Final Report (Vol. I), the
Software Quality Specification Guidebook (Vol. II), and the Software Quality
Evaluation Guidebook (Vol. Il) represents the most recent results of the RADC

software quality program and incorporates pertinent results from previous contracts.

1.4 TECHNICAL APPROACH

*- The general approach used in accomplishing the objectives described in Section 1.2 was

to f -t develop an approach for integrating QM technology into the Air Force
0 software acquisition management process. This resulted in definitions of life-cycle

1-3

Le- .- •
* *o * . ., .° . * . * * , * *. ~ * * .**

USER-ORIENTED VIEW OF AN
FACTORASPECT OF PRODUCT QUAUTY

SOFTWARE -ORIENTED
CIEINCRITERION CRITERION CHARACTERISTICS WHICH

INDICATE QUALITY

QUANTITATIVE MEASURES
METRIC METRIC METRICOCARCESIC

Figure 1.3-1 Software Quality Model

1-

phases and terminology that were used in enhancing the framework and developing the

specification methodology. Work on the framework and methodology was

accomplished next, using pertinent results from previous RADC contracts concerning

software quality measurement. New methodology techniques were developed for

performing tradeoffs among quality factors and for relating quality levels to cost over

the software life cycle, and metric worksheets (used for collecting metric data) were

revised extensively. We prepared a methodology validation plan and made detailed

recommendations for changes to Air Force documentation dealing with software

quality specification and measurement.

We prepared two guidebooks: Software Quality Specification Guidebook and Software

Quality Evaluation Guidebook. Both describe the role of quality metrics within

software acquisition management and define all framework elements. The

specification guidebook provides a comprehensive set of procedures and techniques for

enabling a software acquisition manager to identify and specify software quality

.9 factor requirements. The evaluation guidebook provides detailed procedures and

techniques to enable data collection personnel to apply quality metrics to software

products and to evaluate levels of quality.

1.5 TASK APPROACH AND ACCOMPLISHMENTS

Work was divided into six separate tasks:

a. Task 1, Develop and Document Approach

b. Task 2, Enhance Framework

c. Task 3, Develop Methodology

d. Task 4, Develop Validation Plan

* e. Task 5, Develop Guidebook

f. Task 6, Recommend Revisions

Figure 1.5-1 summarizes task interrelationships. Detailed findings for each task are

reported in subsequent sections.

Task I, Develop and Document Approach. The role that quality metrics should play in

software acquisition was analyzed. Related concepts were explored: system

1-5

-. * *.. .* . . * .* . -.

C. Nut 01 CDRL A002
INTERIM

kkSN A I "N REkC)Mr

)k VEa~yns UCIOPf AND~d CL IN 0004
-~ CIORAL

* * ~ ~ ~ UI LJt ,INI APPROACH 9111bevil lobe 101-d It l Ilt. a d *.ft.rtO eLle PRESENTATION

q .1 41 h3~ AL('~' C CDRL A004* -hCII *Pqode .e~ueet FINAL

CLIN0001 CDRL AOO J3PR
ORAL INTRIMCO L AOOS

PRE E NA~iO REORTTRACE

CUN02 OEIISlIA I ENANCEDIRANEWI)Rn DEC IN 0003 TASK6
ENHANCE FRAME WNORK Nem 141tul(,-,n G'LE6OC RCMMNi*nLn

.2:0 ItljRECOMMEICND
SOW~t41 so 4 2 5 10 so '4 nI~C 504

CoNW4 I

IR~ METIIODI)OCY9PRESENT1AIsON *Spet'tt n),e,atI

OF~~ hOPof .1dI, 11,f I

MVI *.1 Eft-rY.O tom,

BOIN rLINOLOGY TASE
AILI,"I,\.II, DEV LO JI T RI E S TT M

1AIT"111101OFI C-NJ 0

I,- *. U- 7 * ... 4-t-*...

P I "It,.1Y........... RKSFO
BOIN TE--. LG BASE

acquisition life cycle, software development cycle, life-cycle relationships, software

acquisition management, verification and validation, and QA. DODD 5000.1 and the

proposed DOD-STD-SDS (Dec. 1983 draft) were used as baselines for phases and

terminology.

A life-cycle model for use with QM technology was defined (shown in Fig. 1.5-2), and

recommendations were made for both short-term and long-term technology

implementation. Potential benefits and problems with implementation were also

explored. Detailed results are reported in Section 2.0. Concepts for the role of

quality metrics technology in acquisition management and definitions of life-cycle

phases and terminology were used in enhancing the quality metrics framework (Task 2)

and developing the quality metrics methodology (Task 3). A candidate list of

documentation was used as the initial list for investigating and recommending

revisions (Task 6).

Task 2, Enhance Framework. The framework from the most recent RADC quality

measurement contract (described in RADC-TR-83-175) was used as a baseline.

Factors were grouped under new acquisition concerns, and new rating formulas were

developed for several factors. Minor changes were made to the organization of the

criteria and metrics to provide consistency within the framework and to enable more

concise specification of requirements. Metric worksheets were revised extensively.

One problem with the worksheets was that the metric questions reflected results from

four different contracts: styles differed and terminology was inconsistent. Another

problem was that worksheets were organized by life-cycle phases different than those

. defined by the life-cycle model developed in Task I. Another problem was that

information for using the worksheets was documented under three separate covers:

• the metric questions themselves on worksheets, a set of explanations for understanding

metric questions, and a set of tables containing formulas for relating raw data entered

on the worksheets.

Goals for revising the worksheets included: consistency and clarity of metric

questions and terminology, compatibility with DOD-STD-SDS phases and software

terminology, standalone worksheets that required no reference material for answering

". questions, and consistency with the Software Evaluation Reports proposed as part of

the STARS measurement DIDs and being prepared by Dynamics Research Corporation

1-7

........................... -. aA.A.&..,.°AA.. ~.

SYSTEM ACOUISITlON PHASES,

MJ1,10NTRAor,)N AN.D FULL SCALE DEVELOPMENT

Q-,I~y MetrO SofrI le 00e CyCie Model

SOR SSR POe CDR TRR fCAIPCA)*OR

V7 v v vV

r - - - - - - - - - N

S S IL M %L9'w A E , Y '

RQ.'l.yMfr~t% SxccAN ~

Q..Aty e~r(s~M~f ~ -ARE1

DEIG

DI-8 AN

UNT:ES.N
SC

* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ S INE:A ON - *..

-AN T ESTING* . .'

(DRC). BAC and DRC cooperated in defining and clarifying phases, terminology, and

* wording of metric questions; explanatory material and examples were included with

questions. The BAC format for metric questions included formulas for relating raw

data. All goals in revising the worksheets were achieved.

Factor scoresheets were created for evaluating metric data; i.e., translating

worksheet data into scores for metric elements, metrics, criteria, and factors.

Detailed results are reported in Section 3.0. Factor definitions, interrelationships, and

attribute relationships were used throughout procedural steps in the methodology (Task

3). ' -.

Task 3, Develop Methodology. The methodology from the most recent RADC quality

measurement contract (described in RADC-TR-83-175) was used as a baseline. This

baseline was extensively revised and enhanced. The specification process was

refocused to enable definition of software quality factor requirements for system and

software-unique functions at the system level and to enable allocation of quality

requirements to individual computer software configuration items (CSCI) supporting

those functions. Trade study techniques and procedural steps were developed to aid in:

choosing a set of quality factors, choosing quality-level goals for each factor, revising

goals based on beneficial and adverse relationships among fa.'tors chosen, revising

goals based on projected costs for achieving a quality-level goal over the software life

cycle, specifying software quality factor requirements in the system requirements

specification, and assessing compliance with those requirements using quality

evaluation scores. An example for an airborne radar system is threaded throughout

the procedures and techniques.

Techniques and procedures for evaluating the quality level of system and software

products were revised and expanded to include using the new metric worksheets for

data collection, the new factor scoresheets in data evaluation, and a new software

.. quality evaluation report for reporting data collection and evaluation results.

Features are reported in Section 4.0. Procedural steps for the methodology were

documented in developing the guidebooks (Task 5).

Task 4, Develop Validation Plan. We prepared a validation plan, which proposes to

apply the new methodology to one or more projects, beginning with system and

1-9

m .r ..r- J,.......... t

s_ Ut ILd"Vde Tr.,.. RP.t n R q rrrs

--------------------.
* Proceryure

* T rade trudres
* I Sohinete OUsIt. ('.pI~rnce Ptroblnm$

S~Srmeaork ElementI -

* F actor,

* * = o k sheett" "

* Sroe reer r *< yde Ptodtuct$*+*

* Oetrnrtcon,

• ~tw, u*l ut Pe,uo, . .a oar.,,rn Or lr ercird P,, Ott R.-reare) * Socrfc(arorn, N'-'so
r,.,eu. A.che * Ourrrnrn Source

s rAcy d D.d . .."

-..- ,.

Figure 1.5-3 Software Quality Measurement Methodology

1-10

S%.

- - - -. .2 *°...%v.

j

software requirements analysis. A basis for rating the success of the validation effort

was outlined. A set of records to be maintained during validation was identified to aid

in interpreting validation results. The validation plan is described in Section 5.0.

Task 5, Develop Guidebook. We developed two guidebooks to support the methodology

(see Fig. 1.5-3): Software Quality Specification Guidebook and Software Quality

Evaluation Guidebook. The specification guidebook provides procedures and

techniques to aid the software acquisition manager in identifying the specifying

software quality factor requirements and in assessing compliance with those - -

requirements. The evaluation guidebook provides procedures and techniques to enable

data collection and analysis personnel to apply quality metrics to software products

and to evaluate product quality levels. Both guidebooks describe the role of quality

metrics within software acquisition and describe all framework elements. The

Software Quality Specification Guidebook is Volume II; The Software Quality

Evaluation Guidebook is Volume 11I.

Task 6, Recommend Revisions. We reviewed documentation used in command and

control applications by software acquisition managers. Recommendations were

provided for revising selected regulations, standards, DIDs, and guidebooks. Results

are reported in Section 6.0.

1.6 CONCLUSIONS

The work performed under this contract is part of an evolving technological trend to

provide tools for a more scientific approach to the process of software acquisition

management and to the discipline of software engineering. There is an awareness that

certain software characteristics influence the quality level and cost associated with a

software product. For example, modular and well-commented code is easier to
maintain and to reuse. Until now, there has been no organized approach for

identifying the many significant variables contributing to low software quality.

The software quality model (Fig. 1.3-I) and software quality factors, criteria, and

metrics provide an organized view of different aspects of software quality and of

significant software characteristics that contribute to those qualities. Other views of

software quality aspects are possible; however, the view presented here, coupled with

1-11

0 . "-.

the methodology, procedural steps, and mechanisms for collecting and analyzing

metric data, provide a wholistic technology for dealing with software quality

problems. The software acquisition manager is provided with a powerful tool for

communicating quality needs of the user, application, and system; the development

contractor is provided a set of quality goals to aid in parameterizing requirements and

in making design decisions; both the acquisition manager and the development

contractor receive periodic feedback indicating achieved quality levels throughout the

development process-providing better management visibility and enabling timely

decision making.

1-12

U=

1-12

II

2.0 ROLE OF QUALITY METRICS IN THE

SOFTWARE ACQUISITION PROCESS

This section summarizes results of Task 1, Develop and Document Approach.

Information on task results were orginally released as interim technical report I

(CDRL A002) in December, 1982. Task results were updated with new information

during the contract period.

This section examines elements of Air Force system acquisition and software

acquisition processes, describes the process used for specifying and monitoring quality

levels, and discusses the role of quality metrics (QM) technology in the Air Force

software acquisition management process. Considerations include how QM technology

can be integrated into the Air Force software acquisition process and how existing

mechanisms within the acquisition process can be used to implement QM technology.

Conclusions are that QM technology could be integrated into the Air Force software

acquisition process with minimum impact and that existing mechanisms within the

acquisition process could be augmented to implement QM technology. Specifically, to

specify quality levels and other QM requirements, it is recommended that System

Program Office (SPO) software engineering interface with the using command, Air

Force Logistics Command (AFLC), and Product Division Software Quality Assurance

(QA) organization. And then to monitor the quality levels achieved, it is recommended

that one of several groups who already perform a monitoring function (SPO

Engineering, Product Division Software QA, Air Force Plant Representative Office

(.-\FPRO), or an independent verification and validation (IV&V) contractor) be tasked

with gathering and evaluating metric data. The Data and Analysis Center for

* .Software (DACS) at Rome is recommended as a central repository for metric data.

Recommendations include near-term and long-term activities for implementing QM

technology. Near-term activities include changing regulations, standards, and DIDs,

selecting trial programs for implementing QM technology, and conducting classes for

education and training in QM technology. Recommended long-term activities include

selecting and validating metrics appropriate to each product division, establishing an

historical data base for QM data, automating portions of QM data collection and

analysis tasks, and developing QM analysis tools.

2-1

i' -. ..-- -. -.

(Secretary of Defense Decision Points)

MI~ O MILETON I MI Ei IET II
NEE ZrI ONEPT PeOCRAM PRODUCTION s

DEE~NTON SELO]N GO EAD DELY
M ENT

CNETDENAONSTeAT:ON FULL SZEL PODUCTIONI

EXPOR~tO AND VALIDATION D EVELOPNILNT DEPLOYMENT

(L fe Cyrc Phases)

* Figure 2.1-1 System Acquisition Life-Cycle Phases and Decision Points

2-2

, .; ,- . J. . . • . . . - . . o . . .

Advantages and disadvantages of using QM technology in software acquistion

°- management and of integrating QM technology into the software acquisition

management process are also discussed. Potential benefits include a higher quality

end product, better management visibility and control, greater emphasis on quality

" throughout the life cycle, and life-cycle cost savings. Potential problem areas include

maintaining a current QM technology baseline, subjective judgement in scoring some

metrics, and lack of manpower for implementing QM technology.

. 1

- 2.1 SOFTWARE ACQUISITION PROCESS .

The following sections describe selected concepts associated with Air Force software

acquisition manager-ent, including system acquisition life cycle, software development

cycle, life-cycle relationships, software acquisition management, verification and

validation (V&V), and quality assurance (QA). Concepts introduced here provide a

basis for discussions of QM technology integration and implementation in the

acquisition process in later sections. The system acquisition life cycle and software

development cycle are fully defined in DODD 5000.1 and DOD-STD-SDS and are only

summarized here. This section is not intended to describe all activities of each life-

cycle phase but to establish the background for discussion of the role of QM -

technology.

2.1.1 System Acquisition Life Cycle

The system acquisition life cycle defined in DOD-STD-SDS consists of four phases:

concept exploration, demonstration and validation, full-scale development (FSD), and

production and deployment. Four major decision points are associated with these

phases as shown in Figure 2.1-1 and as defined in DODD 5000.1 (Major System

Acquisition). These points are mission need determination; concept selection, -

milestone I; program go-ahead, milestone H1; and production and deployment, milestone
III. The Secretary of Defense, advised by the Defense Acquisition Executive (DAE),

decides at these points whether to continue the program and proceed to the next phase . .

or to terminate the program. The system acquisition life cycle applies to the whole

system, not the individual parts.

2-3

2. 7
. . , . . . ". : .-.

SSR

SOFTIWARE
RQIRME N S

ANAL YSIS ID

PRLIINAR'

I DESIGN CD

DEIED

COIGAND

UNIT TEST IG

I'C NTERATON1

lIRK FCAIPCA

Figure 2.1-2 Software Development Cycle

2-4

. .

7 . 7 -.- - .o

Concept exploration is the initial planning phase, during which the role of and plans

for using computer resources in the system are explored. During demonstration and

* validation, translating operational requirements into functional, interface, and

performance requirements is completed; and requirements for each hardware and .

software configuration item are defined. During FSD, the system is designed, built,

tested, and evaluated. These initial three phases should result in a system meeting

specified requirements. Production and deployment includes production (if applicable) _ -

and delivery and includes all activities involved in supporting the system until it is -. .

retired.

2.1.2 Software Development Cycle

The software development cycle, as defined in DOD-STD-SDS, consists of six phases:

software requirements analysis, preliminary design, detailed design, coding and unit

testing, computer software component (CSC) integration and testing, and computer

software configuration item (CSCI) level testing (see Fig. 2.1-2). This cycle, however,

is not standardized and there are many variations throughout the industry. Although

names and breakdowns vary, the same process is generally followed.

All software requirements are specified during software requirements analysis. The "

authenticated software requirements specification (signed off by both the customer

and contractor) forms the baseline for preliminary design. During preliminary design,

a modular, top-level design is developed from the software requirements. During

detailed design, the top-level design is refined to successively lower levels until

individual units, which perform single, nondivisible functions, are defined. During

coding and unit testing, the designer translates the design approach into code and

executes verification tests. During CSC integration and testing, code units are -

integrated and informal tests are performed on aggregates of integrated units. This P _.

* cycle concludes with CSCI-level testing, during which formal tests are conducted on

the software.

As with the system acquisition life cycle, the software development cycle has decision I

points associated with most phases. These decision points (shown in Fig. 2.1-2) are

the: software specification review (SSR), preliminary design review (PDR), critical

design review (CDR), test readiness review (TRR), and functional configuration audit

2-5

. -'-.. . - . - " *. . . . : , . " "..

*'' *' .' i ' ' "* . .. * * * : * *. .. . -* ..' .- - -- ° -. "

I S UNM AtL[-S TfON LIFE CYCLE

DIEEP OMOSAIN PRODUCT1 ION

AND FULL-SCALE DFVELOPMAENT AND

E. [[[EA I[Q VALIDAT[ON OY0MFNT

OPERATIONAL..
SOFT ARE '

DEOF (PMENT '
CYCLE S'N

PREIMIARY~ i i
N '

CS TERATION

AN S TING

00 lEVEL

Figure 2.1-3 Life-Cycle Relationship between the System and the Operational Software

2-6

V .V V.V

.. - . -. *4 . .' ' . '-. .

(FCA)/physical configuration audit (PCA). These decision points are quite different

from decision points associated with the system acquisition life cycle. At these

decision points it is not determined whether to continue or terminate the program;

rather, progress up to that point is reviewed and it is decided if the developer has

completed the current phase and is ready to proceed into the next phase.

2.1.3 Life-Cycle Relationships

Each CSCI to be developed goes through the entire software development cycle. The

software development cycle can be completed in a single phase of the system

acquisition life cycle or can overlap several phases. For example, software could be _ _

developed for risk-reduction analysis during concept exploration or demonstration and

validation. This software could be used to validate the feasibility of an algorithm or

to compare alternative approaches. This type of software may not be in the language

required for the operational software and may not be targeted for the same computer.

However, it still goes through the entire development cycle. The same is true for test

software developed to aid in validation of the operational software. Operational

software development may overlap several system life-cycle phases; requirements

definition for operational software begins early in the system acquisition life cycle,

although operational software is not fully developed until FSD. In this guidebook

operational software quality is the primary concern; therefore, the relationship of the

operational software development cycle to the system acquisition life cycle will be

examined.

There is a specific relationship between the operational software development cycle

and the system acquisition life cycle in most system procurements (see Fig. 2.1-3).

The software requirements analysis phase overlaps part of the demonstration and

validation phase and the beginning of FSD. The remaining operational software

development phases occur during FSD; i.e., preliminary design through CSCI-level

testing of the software development cycle. This relationship is assumed for the

remaining discussions.

2-7

' o

" . ' *. . *'
•

- . .-. .. . * . . ." , ' . ", .-. "" '. "" - . ' .- *"i " ",

): ,- •. , ". .

2.1.4 Software Acquisition Management

The software acquisition manager has various responsibilities during the software

development cycle. This section focuses on two general functions of software

acquisition management: (1) specifying requirements and (2) monitoring development

to ensure satisfying the requirements. To describe all that this manager does during

the software life cycle is beyond the scope of this guidebook.

Specification of software requirements begins with development of the system

specification and continues until all requirements for each CSCI have been specified

during software requirements analysis in the software development cycle. These

requirements include more than traditional functional and performance requirements.

They also include interface, human engineering, language, data base, delivery,

self-test, anomaly management, resource reserves, and quality requirements. Many

decisions are made to specify these requirements.

40
The software acquisition manager becomes involved at the system level, when system

functional tasks are allocated to software or to hardware. Allocation decisions may be
based on trade studies, system engineering, and risk analyses. Once the allocation of

functional tasks is completed, specific software requirements can be identified. The

result is a set of software capabilities, performance levels, and design constraints.

Identification of these specific requirements usually involves decisions supported by

trade studies. Such trade studies may include, for example, higher order language

(HOL) versus assembly language, distributed processing versus centralized processing,

growth capability reauired for timing and sizing, the degree of human operator

* interaction required, and efficiency versus maintainability. These software trade

studies consider life-cycle costs, risk, schedule, capabilities, software performance,

and final product quality. These activities are concluded when the SPO authenticates

(signs off) the software requirements specifications for each CSCI.

Once software requirements are specified, the acquisition manager begins monitoring

*l software development. Monitoring continues throughout preliminary design, detailed
design, coding and unit testing, CSC integration and testing, and CSCI-level testing

and may continue into the system integration and testing that follows. The primary

concern of monitoring, other than schedule or cost, is whether the software satisfies

2-8

2 -* * ~ * .-. j8 ..* --*

the requirements. Monitoring provides the acquisition manager with visibility of the

evolving product in order to track technical progress and quality. This visibility is

achieved through various reviews, audits, documentation, and products required

periodically throughout development. Established criteria and measurement methods

for each review and audit and for all documentation and products are necessary for

tracking progress. Tracking enables the manager to identify problems early enough to

correct them. Two activities providing feedback are V&V and QA.

2.1.5 Verification and Validation

The purpose of V&V is to provide the Air Force with systematic assurance that

acquired software will perform missions in accordance with requirements. The terms

verification and validation are often used interchangeably, but in the software

development cycle distinct concepts are associated with each. The meaning of these

terms as used here is as follows:

Verification is the iterative process of determining whether the product of each

software development phase fulfills requirements levied by the previous phase. That

is, (I) software requirements are verified to ensure that they fulfill system-level

requirements, (2) the software design is verified to ensure that it satisfies require- ..

nents in the software requirements specification, and (3) code is verified to ensure

that it complies with the top-level design and detailed design documents. Thib process

does not consider whether system-level software requirements are correct or whether

they actually satisfy users needs.

Validation is a continuing process to ensure that requirements at various levels are

correct, thus satisfying mission requirements defined by the using command.

Sometimes validation is considered to be the system-level test activity that validates

the CSCI against software and system requirements. In reality, it is much more than
that. Validation, like verification, continues throughout the software life cycle. For

example, when software requirements are allocated and derived, a system-level
4 requirement could be found to be vague or incorrect; or during design, it could be

discovered that a software requirement is infeasible or ambiguous. Feedback to the

manager enables corrective action to be taken early in development, thereby reducing

risk and cost.
*!

2-9

4
*. . * ..".* .

AL -x-- . --

* MISSION
REQUIREMENTS

*SYSTEM REQUIREMENTS DESIGN CD
(SOFTWARE (raP LEVELDOFSIGN AND (CODE. DATA. ANDOR (SOFTWARE

SPECIFI. TEURM~S DEALDDSIGN TEST PROCEDURES) PRDC

REOUIRIFIVENTS DESIGN SOFTWARE
VERIFICATION VERIFICATION VERIFICATION

Figure 2.1-4 Relationship of Software Development and V&V

2-10

The concept of V&V and its relationship to software development products is shown in

Figure 2.1-4. V&V provides feedback to the software acquisition manager concerning

* software technical performance. The term IV&V is used when V&V is done for the Air

Force by a contractor other than either the prime contractor or the subcontractor who

is developing the software.

2.1.6 Quality Assurance

According to MIL-S-52779A, the purpose of software QA is to ensure that the

software delivered under a contract complies with contract requirements. This type

of QA program will not ensure development of a high-quality software product unless - -

software quality attributes are specified in measurable terms as part of the contract.

The objective of current QA programs is to provide feedback to the acquisition

manager concerning various aspects of the development process. QA is similar to

V&V, the major difference being that V&V provides technical feedback on software

products at only a few points in time, whereas QA provides feedback on a wide range

of development activities. But contractual software quality is not normally defined in

quantitative terms. The current goal is simply to achieve better quality through

controlling the development processes.

Section 2.3 explores how QM technology can help to expand the scope of QA programs

to include specification of software quality requirements and measurement of

achieved quality levels for software development products. The following paragraphs

explain the current scope of QA programs.

At one time, software QA was equated to testing. As an illustration, Section 4 of the

CPCI development specification (according to MIL-STD-483) was called Quality

Assurance Provisions. However, as with other products, it was learned that quality

cannot be tested into software. Because of cost and schedule impacts, it is usually

too late to make changes when quality problems are found during testing. Quality can

be affected by how code is written and how software is designed. If a software quality

problem is found during testing, it is usually very expensive to redesign and to change

the code. Quality should be planned, designed, and built into software. This

realization has lead to the current life-cycle-oriented QA approach. This approach

focuses attention on all phases of the software development cycle; and software QA

2-11

*- - •

~(AnytimeDuring the
Development Process) QA Function

IS THE SOFTWARE FEEDBACK TO
SOFTWARE ACTIVITY OR PRODUCT IN ACQUISITION

ACTIVITY ACCORDANCE WITH MIL- MANAGER
OR STDs, PLANS (SDP, TEST

PRODUCT PLAN, SCM PLAN, SQA
PLAN, ETC.) OR THE CDRL?

Figure 2.1-5 Software QA Function

21

".-

n

2-12

now includes many activities, such as ensuring that software is being developed in
accordance with plans, that requirements are traceable, that design and code are
easily and economically supportable, and that testing is accomplished as planned.
These activities provide necessary feedback to the software acquisition manager.

Software quality assurance programs, however, are primarily administrative rather 7
than technical. For example, the QA organization does not trace requirements but
ensures that Engineering has developed traceability matrices. The QA function is

essentially a checkoff function applied during the software development process; i.e.,
QA ensures that everything is done as planned. Software QA continues throughout the

software development cycle (see Fig. 2.1-5).

Software QA is an evolving discipline. Experience has provided insight into which

development practices tend to produce a higher quality software product, and the QA
program ensures that selected practices are used by checking the development

process. The next step to improving quality is to quantitatively specify quality
requirements and to measure and control the quality of the software product as it

evolves. Implementing QM technology in the Air Force acquisition process will
provide the added dimension of quantitative measures to addressing quality concerns

for software products.

2.2 QUALITY METRICS

The purpose of QM technology is to enable the software acquisition manager to specify
a desired software quality level for each quality factor of importance to the
application and to quantitatively measure the achieved levels of quality at specific

points during development. These periodic measurements enable an assessment of
current status and a prediction of quality level for the final product. Some problems

with delivered software products have been that these products are (to varying
degrees) unreliable, incorrect, and/or unmaintainable. QM technology addresses these

and other quality-oriented problems by providing a means to specify quality
requirements, to quantitatively measure quality achieved during development, and to

predict a quality level for the final product.

2 - 1 3 • -

, 22-13

QM tchnoogymeasresthe degree of software quality, not the level of software

tecnicl prfomane;e.g., how easy is it to maintain the software, not how accurate

ithnaiainalgorithm. However, the process of specifying and measuring quality

levels is analogous to the process of specifying and measuring technical performance.

Bo0th processes begin with similar activities: system needs are assessed, trades are

performned (involving resources and levels of performance or levels of quality), and 1
requirements are specified. Subsequent phases involve evaluations of how well these

* requirements are being satisfied.

Technical performance levels are traditionally evaluated by modeling in early

development stages and by testing in later development stages. Quality has

traditionally been evaluated by such methods as reviews, walk throughs, and audits.

This type of quality evaluation ensures that, for example, designs are traceable to

requirements, configuration management is adequate, and standards and plans are

being followed. However, it does not address such quality issues as software

0reliability, correctness, and maintainability. QM technology enables a quantitative

assessment of these types of quality factors at different stages of development,

thereby ensuring that specified quality levels are being satisfied in a manner similar to

performance evaluation by testing.

Figure 1.5-2 depicts the software life-cycle model used in QM technology. The

software model is shown in typical relationship to two system acquisition phases.

Eight development states are shown with typical review and audit points. There are

two systemn-level activities involving software: system/software requirements

analysis and system integration and testing (both shown in dashed boxes). (Operational

testing and evaluation is the last FSD phase but is not shown as it is not normally

performed by the development contractor.) There are six software development

0 phases: software requirements analysis, preliminary design, detailed design, coding

and unit testing, CSC integration and testing, and CSCI-tevel testing. These phases

refer to the same development activities as are described in Section 2.1. This division

of activities was chosen because at the end of each activity shown in Figure 1.5-2 a

S configuration baseline generally is established, and software products (specifications,

documents, code) descrihing that baseline are available for review or audit and thle

application of quality mreasurements. Also illustrated in Figure 1.5-2 are thle two

points at which quality requirements are specified and the eight points at which

2 -1

quality levels are measured (monitored). These measurement points generally

correspond to the review or audit points for configuration baselines.

2.2.1 Framework

A hierarchical model for quality has been established (see Fig. 1.3-1). User-oriented

factors (e.g., reliability, correctness, maintainability) are at the top level, software-

oriented criteria are at the next level, and metrics-quantitative measures of -.-

characteristics-are at the lowest level.

This model is flexible in that it indicates a general relationship between each factor

and its attributes. This permits updating of individual elements to reflect technology

advances without affecting the model itself. For example, as new user concerns

evolve, new factors can be added at the top level; and as software technology evolves,

criteria and metrics can be added, deleted, or modified as necessary. There are

currently 13 quality factors, 29 criteria, 73 metrics, and more than 300 metric

elements (distinct parts of a metric). Table 2.2-1 shows the 13 quality factors and

describes the primary user concern for choosing each factor. Quality factors and user

concerns are categorized by three types of acquisition concerns with respect to the

software: (1) product performance-how well does the software function in its normal

environment; (2) product design-how valid (appropriate) is the design with respect to

requirements, verification, and maintenance; and (3) product adaptation-how easy is

it to adapt the software for use beyond its original intended use (e.g., for new

requirements, a new application, or a different environment).

Figures 2.2-1, 2.2-2, and 2.2-3 show the quality factors, criteria, and metrics in the

hierarchical relationships of the software quality model. The metrics are identified by

acronym only in the figures. These and other framework elements for QM technology

are described in detail in Section 3.0. The following sections describe some aspects

involved in specifying and monitoring software quality using QM technology.

O
2.2.2 Quality Specification

When determining and specifying software quality requirements, system needs are

assessed from a quality perspective; the desired quality factors, associated criteria,
O

, 2-15-"

0o°

• . "...'

Table 2.2-1 Quality Concerns

r Acquisition Concern User Concern Quality Factor

HOW WELL DOES IT UTILIZE A RESOURCE? EFFICIENCY

HOW SECURE IS IT? INTEGRITY

PERFORMANCE -
HOWWELL DOES IT WHAT CONFIDENCE CAN BE PLACED IN RELIABILITY

WHAT IT DOES?
FUNCTION?

HOW WELL WILL IT PERFORM UNDER SURVIVABILITY
ADVERSE CONDITIONS?

HOW EASY IS IT TO USE? USABILITY

HOWWELL DOES IT CONFORM TO THE CORRECTNESS

DESIGN - REQUIREMENTS?

HOW VALID IS THE HOW EASY IS IT TO REPAIR? MAINTAINABILITY
DESIGN?

HOW EASY IS IT TO VERIFY ITS VERIFIABILITY
PERFORMANCE?

HOW EASY IS IT TO EXPAND OR UPGRADE EXPANDABILITY
ITS CAPABILITY OR PERFORMANCE?

ADAPTATION - HOW EASY IS IT TO CHANGE? FLEXIBILITY
-" HOADAPTAON t

HOW ADAPTABLE IS HOW EASY IS IT TO INTERFACE WITH INTEROPERABILITY
IT?ITANOTHER SYSTEM?

HOW EASY IS IT TO TRANSPORT? PORTABILITY

HOW EASY IS IT TO CONVERT FOR USE IN REUSABILITY
ANOTHER APPLICATION?

4

2-16

.- 7 .A

COMMUNICASYOTEM CESSIBLITYRAG

Ss I

SS 2

RELIABILIT Y

ACCURACY ANOMALY MANAGEMENT SMLCT

AdAM.1 - SI 2

- AM. 2 I

-AMA -K14

AM.55

AM.6S6

AM.7

AM.3 O,

AM 4

~j. AM 5
EAM7OPERA3!LITY TRAINING

Opi TN 1

4 oP 2

Op 3

Figure 2.--1 Performance Factor Attributes

2-17

V 4W. .~

CONSISTENCYMDLATYES SELODSIPTIENES SIMPLICITVSBILITY

CS.

- 1.

SELF-

AUGMENTA81LITY PENERALITY UAIY DESCRIPTIVENESS SIMPLICITY VIRTIJALiTy

AT 3 503 Sl 3

AT 4 $1 4

GENERALITY MOUDRT ESCRIPTIVENESS SIMPLICITY

EI503 $I1
GE 2So 2$12

CL3 3I Sr
SS14

SI Is

SYSTEM

CL~~~S 22D2M 2S

SYT 4

PORTAJLI-ySI S

SEF
INEEDNE MDKRIy DSRPVN1

01NI S
,02 M219

REUS~:LIS

Table 2.2-2 Software Quality Factor Interrelationships

ACQUISITION CONCERN PERFORMANCE DESIGN ADAPTATION

AE I R S LIC M V E F I P R
CF N E U SQ0 A E X L N 0 E

QAIYF T L R A R I R P E T R U
F QALTYR ElI V B R N I A X E T S

C FATO c A I I E T F N I R A A
IAFFECTED I R B V L C A I D Bs 0 B B

TE I A I TA A I P I I
0N N TIL B T N N B B L E L L

QU LT C Y I I Y E A I I I R I I
QUAIT T I S B I L T A T T

FACTOR Y I S I I I YIB Y Y
N SE CI FIEDTL T I

R T
N T

P EFFICIENCYI

F INTEGRITYT
0__ __ _ _ _

R
M RELIABILITY I iI I

SUSVABILITYTz L7 Iv

CORRECTNESS

IMAINTAINABILITY zk z z j --

NVERIFIABILITY--._ _

EXPANDABILITY 77-

D FLEXIBILITY

T INTEROPERABILITY

0TPORTABILITY 1
N EUABILITY

POSITIVE EFFECT

77 = NEGATIVE EFFECT

BLANK =NONE OR APPLICATION
DEPENDENT

2-20

K V . .-%

and applicable metrics are selected; and quality-level goals are derived for each

" separate quality factor. When assessing system needs, application characteristics

should be considered. For example, if the system will have a long life cycle, emphases

on maintainability, flexibility, portability, and expandability are recommended.

Factor goals define the required quality levels to be achieved for the factor (i.e.,

excellent, good, or average). In general, choosing a higher quality goal will result in

more resources being expended to achieve that level. When deriving factor goals,

interrelationships between factors should be considered because a high quality goal for
one factor may conflict with a high quality goal for another factor. Table 2.2-2 shows

the beneficial and adverse relationships between quality factors; some factors have a i

positive relationship and others conflict. For example, specifying a high quality level

for most factors conflicts with specifying a high quality level for efficiency.

A typical problem for an embedded software system arises when reliability is of the

* utmost importance because of the type of mission to be performed, but efficiency is

also required because of space and weight limitations, and flexibility is needed because
of the variety of missions and/or targets. It is normally infeasible to select and

achieve high quality levels for all three factors. Highly efficient code is usually

tightly written assembly-level code and tends to be not as reliable or as amenable to

- changes (flexible) as looser, more structured higher order language code. And code

- . written to be reliable and flexible tends to be less efficient. Trade studies are needed

" to resolve these problems. If some efficiency is sacrificed for reliability, then

performance goals (e.g., for accuracy or range) may be affected. If some flexibility is

sacrificed for efficiency, then the scope of the missions and/or targets may be

reduced. QM technology provides an aid for decision making when selecting quality-

level goals, when determining feasible software requirements, and for allocating

O acquisition resources. Several iterations of quality tradeoffs may be required for

choosing reasonable quality goals. Section 4.0 of the specification guidebook (Vol. II)

provides specific techniques for choosing quality factors and includes consideration of

application characteristics and factor interrelationships.

2-21

. ..S . '

2.2.3 Quality Monitoring

When monitoring software quality, the quality metrics (in the form of questions on

worksheets) are applied to software products (specifications, documents, code) at

different stages of the development cycle, and a quality-level score is calculated for

each factor. The factor score predicts a quality level for the final product. The

points in the development cycle where data gathering and analysis are recommended is - --

shown in Figure 1.5-2. These points generally correspond to normal reviews and audits

conducted when a configuration baseline has been established (SDR, SSR, PDR, CDR,

TRR, and FCA/PCA). Before each review or audit, the metrics selected for the

project are applied to software products resulting from that phase of development.

This results in a quantitative value for each metric. The metric values are then used

to calculate scores for each criterion, and the criteria scores are used to calculate a

score (predicted quality level) for each factor.

The quality metrics are applied at incremental points during the development phases.

This enables periodic review of progress in meeting quality goal requirements and aids

in pinpointing areas of weakness (and strength) in product quality as the product

evolves. There are two types of metrics-anomaly detecting and predictive. Both are

used in scoring. A low score for predictive metrics indicates that a low score will

probably result for the end product because the design is not considering aspects

important to achieving the desired quality level. For example, if the design has very

little spare storage capacity, the end product will not be highly expandable. A low

score for anomaly-detecting metrics indicates an actual design or code deficiency.

For example, if provisions are not made for immediate indication of an an access

violation, software integrity would be jeopardized. Evaluating low metric scores

provides an opportunity for identifying deficiencies and anomalies during development

when they are more easily corrected.

Worksheets have been devised to help gather metric data. There is a separate

worksheet for each development phase, and each worksheet lists only metrics

applicable to that phase. A more detailed explanation of the worksheets is provided in

Section 3.4.

2

2-22 .

... .

2.3 SOFTWARE ACQUISITION USING QUALITY METRICS

Two general functions of the software acquisition manager are described in Section

2.1.4: (1) specifying requirements and (2) monitoring development to ensure that

requirements are being satisfied. Also two general functions associated with QM

technology are described in Sections 2.2.2 and 2.2.3: (1) specifying quality require-

ments and (2) monitoring development to ensure that metric scores are predicting

specified quality goals. When using QM technology, monitoring begins earlier in the

,* development cycle. The relationship of these functions to the software life cycle is

shown in Figure 2.3-1.

Specifying and monitoring have not usually overlapped. The specification of software

requirements was normally completed before development monitoring began, as shown

in Figure 2.3-1. Metric questions have been devise I to enable evaluation of software

-E quality reflected in the system specification available at the system design review

(SDR). This moves the start of monitoring forward so that the two functions overlap.

Several organizations normally are involved in performing these two functions.

Although the internal structure of the Air Force product divisions (ESD, ASD, and SD)

may di -, the relationship of the SPO to external organizations is basically the same

for each 'Jvision. Organizations that may be involved in the QM functions and their
recommended relationships are shown in Figure 2.3-2. Organizational relationships are

discussed in the following paragraphs.

Several organizations should be involved in the specification function. The primary

organization responsible for software requirements specification is SPO Software

Engineering. However, SPO software engineers need help from both the using

command and Air Force Logistics Command (AFLC) to fully define software quality

needs. Both organizations have a vested interest in requirements affecting system

operation and support.

S

The using command is primarily interested in operational requirements and is

especially qualified to contribute to a definition of quality needs for the performance

quality factors (e.g., efficiency, integrity, and reliability). AFLC is primarily

interested in support requirements and is especially qualified to contribute to a

2

2-23 .

~ -, °... *. . - . *. • * ** N* . . >- - . . *
* -

h-9

SY TE YEM'S2WARE I EQUiIRE ,E N
RQUIRE ME NTS ANALY SIS ANALYSIS O

Dere'Opment

Cycle

7,777.77-I

AN TEPA _j i ~U

AND S.N,
A(O..I, ~On PECIYINGMONITORING

SPECIFYING

* Ientitying Quay factor$ to Be

Oeter,o,, Req-rrd Goals for Each

MON ITOR IN G

* Gather Oata at Review Points
* toIult. Data
* .CoPare to Rfoouements
* Track Progre,
* CorrectOeuciencr@S latS nay)

Figure 2.3-1 Software Acquisition Quality Metrics Functions

2-24

U-9-

C on~l AfC D.-on O

A, Cl.CIACIM C EL, AUSC)

SPO AAD

AR *A' en.' 9 CmrY~fldAP *A..FoaeESU f~d'n C Syse"'O.,' o'

VSV A, TInde gdn C~,6tomm and v~~~no AO o A' DO, eeop nh et

Figur 2.3- Ar orcen Acuiiin ReAtionships (.v--d e in Q At- M lec Funons

MAC FAStyA . , n P C Sl -P. - Oll A 0 . ,A11 1

2-25

Using

Command AF LCPrdc

* ~ ~ ~ ~ ~ ~ ~ ~ rvd QMoic supportniVeiy Mreureet
reqqureements

Pr~~~~v~~croid 07nra1 oproftawareyQ rqurmet

requirements

2-26

definition of quality needs for the design and adaptation quality factors (e.g.,

maintainability, expandability, and portability). With input from these organizations,
SPO Software Engineering can determine the contractual statement of quality -

requirements. In addition, the Product Division Software QA organization is normally

tasked to ensure that quality requirements are included in the contract. These

responsibilities and relationships for the specification function are shown in Figure

2.3-3.

Several organizations also should be involved in the monitoring function. Among the

first activities are identifying and negotiating with the organization that will collect

and analyze metric data. If that organization is to be another Air Force agency, such

as Air Force Contracts Management Division (AFCMD), then the SPO needs to

negotiate the effort through a memorandum of agreement. If the organization is to be

an IV&V contractor, then the IV&V contract needs to be negotiated. These

negotiations must be completed very early in the program before data collection

starts, and SPO Software Engineering must ensure that necessary support is provided.

Several organizations could collect and analyze data, including SPO Software

Engineering, the Product Division Software QA, the Air Force Plant Representative

Office (AFPRO), and an IV&V contractor. The following criteria were established to

aid in selecting an organization: technical capability, labor availability, economy, and

data availability. Technical capability refers to the depth of technical understanding

of software by people in the organization. Labor availability refers to availability of

* qualified people to perform this additional task (i.e., currently available or readily

obtainable). Economy refers to the least costly method for the SPO to obtain data.

Data availability refers to the ability to access the most current contractor

documentation and information. Informal lines of communication greatly influence

this factor.

We rated four candidate organizations using these criteria, based on our experience. A
score of I represents the best conditions and a 3 represents the worst for each

criterion. A total unweighted score was determined for each organization, with the

lowest score representing the best choice. The evaluation scores are shown in Table

2.3-I.

2-27

I

Table 2.3-1 Organizational Evaluation

T C L A E D A S S
E A A V C A V C U
C P B A 0 T A 0 M
H A 0 1 N A I R M

CRITERION N B R L 0 L E A
I I A M A * R
C L B y B y
A I I I
L T L L

y I
ORGANIZATION T T

Y Y

SPO 2 2 1 2 7

ENGINEERING

PRODUCT DIVISION 3 3 1 3 10

SOFTWARE QA

-.- AFPRO 2 2 1 1 6

IV&V 1 1 3 2 7

1 = BEST
2 = MEDIUM
3 = WORST

* Lowest Score is Best (Unweighted)

2-28

0O

Several assumptions were made for scoring. The first was that all criteria are

weighted equally; actually, however, technical capability and labor availability may be

overriding factors for selection. For technical capability, it was assumed that Product

Division Software OA groups are unlikely to be able to obtain people experienced in

both software engineering and QA to perform that job. For economy, it was assumed

that any Air Force person (civilian or military) is a free resource for the SPO.

Otherwise, the SPO must pay for IV&V contractor services. Data availability scores

include the assumption that the IV&V contractor works for SPO Software Engineering

and that good communication channels are established. These assumptions may not be

valid in all situations.

The AFPRO received the lowest score and, therefore, was rated best. It is generally

recommended that the AFPRO perform data collection and analysis for the SPO.

When this cannot be negotiated, it is recommended that an IV&V contractor be

*Q assigned this task. Although SPO Software Engineering and the IV&V contractor are

rated equally, the recommendation to use an IV&V contractor was made because of

better labor availability. It is recommended that a chart similar to the one shown in

Table 2.3-1 be developed early in a program.

A proposed DID, Software Quality Evaluation Report, is contained in Appendix C and

can be used to report data collection and analysis results to the software acquisition

manager. This feedback enables the manager to track progress, ensure that require-

ments are being satisfied, and take corrective action when necessary. Recommenda-

tions for responsible organizations and relationships for monitoring are shown in Figure

2.3-4.

*1 The preceding paragraphs discuss government monitoring only, and the development

• -contractor was not mentioned. Because quality factor requirements are included as

contractual requirements, the development contractors must also monitor achieved

quality levels to show compliance. However, to ensure that data and reports received

by the SPO are unbiased, we recommend that the government independently monitor

achieved quality levels.

2-29

• . ,- . . * . . .- " ." * -, "- " . "

Provvide quality metric
evavdeuq

alit

Rcommendevde ResonlittiesadcltosisfrteQ oioigFnto

eviato

2 -30

2.4 IMPLEMENTING QUALITY METRICS

We recommend performing both near-term and long-term activities to ensure

successful implementation of QM technology in the Air Force acquisition process. --

Near-term activities should enable initial use of QM technology. Long-term activities

should enable the technology to mature.

2.4.1 Near-Term Implementation

Near-term activities should include trial programs to evaluate utility of the

terminology, policy changes to initiate use, and education and training for

familiarization.

Trial Programs. We recommend that QM technology be used on several trial programs

prior to full implementation in the Air Force acquisition process. The purpose of the

trial programs is to test acceptance and usefulness of QM technology and guidebooks. .
Programs selected should be representative of programs from each product division.
These programs should be different than those selected to validate the methodology

(see Sec. 5.0).

RADC should coordinate with the product divisions to identify candidate programs.
The bases for selection should favor evolving the QM technology. RADC should work
with computer resources focal points and software QA personnel at the product

divisions to obtain data for selection. _

Policy Changes. Policy change should include changes to regulations, standards, and

DIDs that control using QM technology and to guidebooks addressing QA, reviews, and

audits. Changes should be submitted early as it takes 1-3 months to incorporate

changes to guidebooks and policies at the product division level and 6-12 months (or
longer) to incorporate changes to policy at AFSC or Air Force level. While policy

changes are being coordinated, a policy statement can be issued as an in,.erim measure
by higher-level headquarters to direct the use of quality metrics technology in

software acquisitions.

Detailed recommendations for changes are described in Section 6.0. Recommended
changes ensure that QM technology will be integrated into the Air Force acquisition

2-31

[A

process and that use of QM technology will begin prior to specifying system-level

requirements. We recommend that RADC contact the Office of Primary

Responsibility (OPR) regarding each regulation, standard, and DID to be modified and

coordinate change preparation.

Education and Training. We recommend an education and training program to prepare

personnel in program offices for using QM technology because this technology is

relatively new. The program should consist of two courses addressing different issues:

software quality specification and software quality evaluation.

The specification course should be tailored to the needs of Air Force software

acquisition managers, software engineers, and software QA personnel. This course

should include topics such as an overview of software quality assurance and its

evolution to date, benefits of using quality metrics technology, how to specify QM

requirements, how to make QM trade-offs, how to use evaluation data to track

progress, courses of action that should be taken based on evaluation information, and

when data should be collected. The objective is to provide an understanding of the

role of QM technology in software acquisition.

The evaluation course should be targeted to data collection and analysis personnel.

Topics for this course should include when to collect data, quality framework

elements, software products, data collection and analysis procedures, and automated

data collection and analysis tools. The objective is to provide an understanding of

quality factors and how to measure quality levels.

Both courses should be developed prior to using QM technology in the program offices.

It is recommended that RADC determine the best way to develop these courses and

.-initiate actions to enable development. RADC should also identify an OPR for

training to be conducted.

2.4.2 Long-Term Implementation

Long-term activities should include selecting and validating metrics for each product

division, establishing an historical data base, and automating potions of the procedural

steps. Each product division should select metrics appropriate to their applications,

2-32

-~~~~~~~~~~~~~~~.,..-...,...o........................" ,..... ,.\ '.', '', ,' . .''...,''

validate metrics, and establish factor ratings for use in different applications. A

single, centralized data base should be established to enable validating metrics,

developing factor ratings, and evaluating success of the application of QM technology.

* Portions of procedural steps should be automated to improve efficiency.

These activities place a requirement on the QM technology to be flexible for tailoring

to applications and for accommodating changes resulting from validation efforts. QM

foundation concepts (e.g., quality model and metric measurement) and the framework,

in general, were shown to be sound and flexible through repeated application to a

variety of programs. Many of the quality factors and metrics have been validated for

general applications, and new and revised factors and metrics have been incorporated.

Potential for growth and change is inherent in the QM technology.

Select and Validate Metrics. There are over 300 metric elements; some may not be

appropriate for specific applications. Each product division should select a metric
Psubset appropriate for its products that can then be tailored for specific applications.

A product division may also elect to generate and validate new metrics and metric

elements.

Establish Quality Metrics Database. When validating metrics and establishing factor

ratings, data is required from different applications to perform correlations and -- -

comparisons. We recommend that the Data and Analysis Center for Software (DACS)

at Rome be used as the data base for quality metrics information and that the SPO

provide a copy of the quality requirements and all metric data to DACS (e.g., provide

a copy of the Software Quality Evaluation Report). This has the advantages of

providing one centralized location for all QM data and enabling access to all historical

data by any one product division. It also enables large-scale data analysis and

correlation to be performed on data from all product divisions. Any changes in QM

technology such as new factors, metrics, and worksheet formats should be

*. disseminated from a central point. This concept is illustrated in Figure 2.4-1.

Automatic Activities. Automating portions of procedural steps can improve efficiency T-.'
of the process. Candidates for automation or automated support include trade studies

considering factor interrelationships and life cycle costs, data collection and analyses,

and report generation. When source information for collecting data is documentation,

2-33
2 - 3 i : " ' *

r, r

Framework Elements:
eFactors• "" "o Criteria, ,'

a Metrics
* Metric Elements
e Worksheets e Framework
* Scoresheets Elements

* Historical AF PRODUCT DIVISION PROJECT
Data AF PRODUCT DIVISION PROJECT

DACS AT ROME p. AF PRODUCT DIVISION PROJECT
Store Data 0 Select Framework

* Validate Metrics Elements

* Gather Metric
Framework Data * Metric
Elements @ Analyze Data Data

• Quality _~Require-

{"" • ~Actuals . -
. ~(Data,--.
- ~Rating S&""''
~~~M o d i?'ca -.- . i

- " .~Q t io n s ) • ,

Figure 2.4-1 Relationship between Product Divisions and DACS

-"0

2-34

. ~2-34-"- -

9I1



data normally entered on metric worksheets could be entered directly into a data base,

and reasonableness checks could be performed on data entries. When source

information is code, analyzers could be developed to gather metric data. The
Automated Measurement Tool (AMT) has been developed to gather metric data from

COBOL source code.

2.5 POTENTIAL BENEFITS AND PROBLEMS

This section discusses the potential benefits and problems associated with integrating

QM technology into the software acquisition management process and of using QM

technology during acquisition.

2.5.1 Benefits

-- Possible benefits of using QM technology include a higher quality end product, greater

* emphasis on quality throughout the life cycle, better management control, and life-

cycle cost savings. A high-quality end product is possible because required quality

levels are specified quantitatively. There is little room for misinterpretation or for

undesirable results such as a highly efficient but unreliable and unmaintainable

* product. The acquisition manager is assured that the end product is of the required

degree of quality. Also, other software requirements are considered at the same time

that quality requirements are being specified. This means that the quality

* requirements should be reasonable and should not conflict with functional and

performance requirements (or vice versa), thereby increasing the likelihood that all

software requirements can be satisfied within allocated resources. In addition,

- achieved quality levels are monitored throughout development providing increased
visibility for control of quality. Periodic application of metrics provides the

acquisition manager with adequate feedback about software development progress and

enables early redirection if necessary. Finally, evaluating specific low metric scores ...-

provides an additional mechanism for detecting deficiencies and anomalies in

requirements, design, and code.

Life-cycle cost savings are possible for several reasons. Using metrics to detect

deficiencies and anomalies enables correction during development. Correction at this

time is less costly than during operation and maintenance. Also, it is possible to be."

2-35

- .-. ,*. r , , , . : .;. . " -. '' . '.I
..... . . ................ ... .. . . . ;. -_



A..

;nore precise about funding for quality. If adequate quality levels are achieved during

development, it is unnecessary to spend more effort in raising quality levels or in

developing a near-perfect product.

The greatest cost savings potential comes from having certain qualities actually built

into the software. For example, if system A has a high level of reusability built into

the software, then cost savings result from building system B reusing a portion of

system A software. These potential cost savings are available for other quality

factors such as flexibility, portability, interoperability, and expandability. Details for

considering cost are described in Section 4.0 of the specification guidebook (Vol. I1).

Other benefits can also be realized. For example, use of QM technology can provide

the acquisition manager an added assurance that the required degree of reliability is

achieved in the final product. This would be especially important in acquisitions

involving space applications or nuclear armaments.

2.5.2 Problems

There are potential technical and administrative problems when using quality metrics

in acquisitions; i.e., in integrating QM technology into the Air Force software

acquisition process. Problems could arise during one of the most important tasks, that

of maintaining a current QM technology baseline. Baseline changes could result from,

for example, changes in quality factor ratings, new factor ratings being established,

new metrics being established, and metrics being validated for new application areas.

Changes could originate from any product division using QM technology. Using DACS

would minimize the risk of such problems as: multiple baselines in the product

divisions, duplication of validation efforts, and use of outdated information (e.g.,

outdated ratings).

A potential problem could arise where subjective judgment is required in scoring some

rmetrics. Two people gathering metric data from the same software products could

score the worksheets differently. This risk has been minimized by rewriting the

questions on the metric worksheets so that they are clear, simple, and understandable.

Also, metric element explanations have been included for clarification. As more

historical information becomes available, it will be possible to do a reasonableness

2-36

* . .. .o .. ,.



* " - - - , 4 : -. ... . , .: , ' - -L, . - . % _ 
L 

-

check on worksheet data entries, based on previous data ranges. However, we

recommend that experienced personnel perform data collection and that education and

training be provided for personnel involved with QM technology.

Another potential problem might arise when attempting to automate portions of the

data gathering task through an automated measuring tool. This type of tool scans

source code and outputs statistics on the code (e.g., percentage of comments, number

of specific constructs). The scanner is language dependent and must be developed for

each language, but standardization on a language (e.g., Ada) will minimize cost.

Problems with organizational structures and manpower may be encountered when

implementing QM technology at the product divisions. Program offices do not have

QA divisions. QA in the program office is usually done by Engineering. In addition,

software QA organizations in the product divisions are relatively new. These

organizations are trying to define their role in the acquisition process and their

relationship to the program offices. Absence of a well-defined organizational

structure for software QA could lead to disagreements over assigning QM

responsibilities. Either organization could resist accepting responsibility for QM

functions because of staffing problems. Program offices are usually not fully staffed

with software engineers; to accept more responsibilities without additional personnel

would be difficult. Software QA organizations have small staffs and find it difficult to

hire qualified personnel. A person with experience in both software engineering and

QA is required, but ft'v software engineers are interested in QA assignments.

Staffing problems should receive attention during implementation of QM technology in

the Air Force software acquisition process.

lp

2-37
. . . * • .-* *,

-, .* .. .* . . -- .. . 4 * -4 .*. 4 : ::-. . . -. . . . , .,



P. .F. a I.

3.0 QUALITY METRICS FRAMEWORK

This section identifies enhancements made to the software quality framework in Task

2, Enhance Framework. The framework from the most recent Rome Air Development

Center (RADC) quality measurement contract (described in RADC-TR-83-175) was

used as the baseline. The following sections provide descriptions of elements of the

enhanced framework: factors, criteria, metrics, metric worksheets, and factor

scoresheets. Changes to the baseline framework are discussed after the description of

each enhanced framework element.

An interim technical report (CDRL A003) for this contract was produced that

describes an interim enhanced framework resulting from changes prior to July,

1983-approximately the midpoint of this contract. Pertinent baseline elements from

RADC-TR-83-175 are also identified. Subsequent to the interim report,

DOD-STD-SDS and the STARS DIDs became significant considerations in enhancing

the framework. The following sections summarize the final enhanced framework and

all changes resulting from this contract.

General Description. The goals of quality metrics (QM) technology are to enable a

software acquisition manager to (1) specify the types and degrees of software qualities

desired in the end product and (2) predict end-product quality levels through measuring

the degree of those qualities present during development. The RADC quality program

(see Sec. 1.0) has established a model for viewing software quality. Figure 1.3-1

depicts this model, showing a hierarchical relationship between a quality factor,

criteria, and metrics. Criteria and metrics are factor attributes.

Quality factors (e.g., reliability, usability, correctness, and maintainability) are user-

oriented terms, each representing an aspect of software quality. Thirteen quality

" factors are used to specify the types of qualities wanted in a particular software

* product. Product environment and expected use affect emphasis. For example, if

human lives could be affected, integrity, reliability, correctness, verifiability, and

survivability would be emphasized. If the software is expected to have a long life

cycle, maintainability and expandability would be emphasized.

3-1

* .-: " . . . . .



r rrr -r-rrw--xrr--- - - -.

Criteria are software-oriented terms representing software characteristics. For

* example, operability and training are criteria for usability. The degree to which these

characteristics are present in software is an indication of the degree of presence of an

aspect of quality (i.e., a quality factor).

Metrics are software-oriented details of a characteristic (a criterion) of the software.

* Each metric is defined by a number of metric elements. The metric elements enable

quantification of the degree of presence of criteria and, hence, factors. "Are all the

errors specified which are to be reported to the operator/user?" is an example metric

- element question for the criterion operability (see worksheet 0, OP.l(2), App. A).

Using the methodology developed under this contract, the acquisition manager is

*responsible for specifying needed quality factors by priority, with quality levels

commensurate with cost consideration. Factor requirements are provided as part of

the software requirements (along with operational, performance, and design

requirements). This enables the corresponding criteria and metrics to be identified

and used to measure the degree of presence of desired qualities at key review points
during development, allowing periodic predictions of the quality level for the final

product. Metric worksheets and scoresheets help in applying the metrics and in

determining metric scores.

Major Changes. Several major enhancements were made to the framework that

simplify the framework conceptually and ease the tasks of specifying quality

requirements and collecting metric data.

a. Factors and criteria were grouped in three categories-performance, design, and

adaptation-reflecting acquisition manager concerns.

b. Metric worksheet information was recategorized to enable metric questions to

be applied to specific products of phases described in DOD-STD-SDS.

C. Metric questions were completely rewritten using terminology described in

DOD-STD-SDS, using explanatory information and examples for clarity, and

including formulas to correlate answers. Metric questions are nearly identical to
questions in the Software Evaluation Reports proposed as part of the STARS

measurement DIDs.

3-2

- , -... -..-- '- . ..



d. New factor scoresheets were generated for translating worksheet information

into scores for metric elements, metrics, criteria, and factors.

Rationale for change decisions include: (1) consistency within the framework, (2) ease

of understanding and use by a software acquisition manager and by data collection and

reduction personnel, and (3) compatibility with current DOD software technology

thrusts.

3.1 SOFTWARE QUALITY FACTORS

Description. Thirteen software quality factors are identified in Table 2.2-1, with the

user concern that characterizes the need for each type of quality. Quality factors are

shown grouped under one of three acquisition concerns: performance, design, or

adaptation. An acquisition manager specifying requirements for software will likely

do so in a DOD-STD-SDS format in four main areas: (1) software performance

characteristics (performance), (2) software design and construction (design), (3)

- anticipated software expansion or reuse (adaptation), and (4) quality assurance

o. (including quality metrics). The similarity of areas and acquisition concerns enables

the acquisition manager to easily identify and select quality factor categories and

specific factors of interest. Quality criteria are similarly categorized (see Sec. 3.2);

thus, selecting criteria and metrics is simplified.

Changes. The three acquisition concerns-performance, design, and adaptation-were

formerly called life-cycle activities and were termed product operation, product

revision, and product transition, respectively. The reason for this change is that it is

easier for an acquisition manager to work with the new categories, as described in the

prior paragraph.

Two factors were moved under a different category when category names were

changed. Correctness, formerly under product operation (now performance), was

placed under design (formerly product revision). Flexibility, formerly under product

revision (now design), was placed under adaptation (formerly product transition). The

reason for this change is that it enables criteria to be categorized under the same
three acquisition concerns: performance, design, and adaptation. There were

* formerly no categories for criteria.

3-3

7



Table 3.1-1 Software Quality Factor Definitions and Rating Formulas

RiAC P tCSSNTWHC,-IARO,C',S .ME) p TOE L 5 CUAERSD,1' ?F' ON

ITEIR T, E.TEN- OYCHT SOFTWARE WILL PER&ORmwiTHFOUT 1.!5 ERRORS.......
A:L lIPE 5 01, TO LUNAITH 0 P,IE LA(C CE TO THE C 0C OR DATA LINE S OF C ODE

41TH-N ASPEOFIED TIM E PEROD

,I -R-11 RLLA L-TY EXTENT TO VVHICH THE SOFTWARE W:LL PERFORM WITHOUT ANY I ERRORS

PA uRE S WITIN A SPEC.FED TIME PER'OC) ONES OF CODE

S,,~IARILTY EXRTENT TO WYICYF THE SOFTWARE WILL PERCORM ANOSuPPORT I ERRORS
CL F,NCTIONS WITHOUT FAILURES WFNA SPECIFIED TIME LINES OF CODE

PEIOWFEN APORTIONOF THE SISTEW ISI, NOPERAELE

USABIITY REiATIVE EFFORT FOR USING SOFTWARE ITRAINiNGAND I LABOR-DAYS TO USE
OPERATION) le g FAMILIARIZATION INPUT PREPARAT:ON LABOR-YE ARS TO DEVELOP

CORRECTNESS E;TENT TO WHCH- THE SOF TWARE CONFORMS TO ITS I ERRORS
SPECE CATGNS AND STANDARDS LINES OF CODE

LIE S.N MA NIA:NAiLITY EASE OF EFFOR FT FOR LOCATING AND FIXING A SOFTWARE FAILURE T 0 1 AVERAGE LABOR-DAYS TO FIX)
AI THIN A S PECFED TIME PERIOD

REIBLT RE LATIVE EFFORT TO VERIFY THE SPECIFIED SOFTWARE OPERATION I- EFFORT TO VERIFY
AND PERFORMANCE EFFORT TO DEVELOP

EXPANDAIALITY RFELATIVE EFFORT TO INCREASE THE SOETVAFE CAPABILITY ORt F EFFORT TOExPAND
PE FFORMANCE By ENHANCING CURRENT FUNCTIONS OR BY ADDING EFFORT TO DEVELOP
NE Nl FUNCTIONS OR DATA

FEILTY EASE OF EFFORT FORCHAP~iNG THE SOFT,&ARE MISSIONS. 1- 00S (AVERAGE LABOR-DAYS TO
F UNCTIONS OR DATA TO SA1ISFYO OTHER REQUIREMENTS CHANGE)

AD.P'ATION RTEOPERPABILTY REL ATIVE EFFORT TOCOUPLE THE SOFTWARE OF ONE SYSTEM4TO 1. EFFORT TOCOUPLE
TeME SOFTWARE OF ANOTtIERSYSTEM EFFORT TODIEVELOP

PORTARILIY RELATIVE EFFORT TO TRANSPORT THE SOFTWARE FOR USE IN I- EFFORT TO TRANSPORT
A NOTHER ENVIRONMENT (HARDWARE, CONFIGURATION ANDPOR EFFORT TO DEVELOP
SOFTWARE SYSTEM ENVIRONMENT)

REUSABILITY RELATIVE EFFORT TO CONVERT A SOFTWARE COMPONENTFORUSE F- EFFORT TOCONVERT
iN ANOTHE A APPLICATION EFFORT TO DE VELOP

NOITE THE IRA.TING VLACE RANGE S IFROM V TO I F THE

II A-E , ESS THAN 0 THE VA TN1,XL IS
ASS I NED TOT0

3-4



The user concern for -orrectness was changed from a general concern for overall

software performance to a specific concern for conformance to requirements (i.e.,

specifications and standards). The reason for this change is that attributes of

correctness deal exclusively with format of software design and documentation; none

deal with content material affecting software performance.

3.1.1 Factor Definitions and Rating Formulas

3.1.1.1 Description

Quality factor definitions and factor rating formulas are shown in Table 3.1-1. Rating

formulas quantify user concerns for the final product. The formulas use three types

of measurements: (1) number of errors per lines of code (2) effort to perform an

action and (3) utilization of resources. Ratings should fall in the range from zero to

one. The rating formula for reliability is one minus the number of errors per lines of

code. For example, if one error per 1,000 lines of code occur during a given time

period (e.g., during operational testing and evaluation) the rating formula shows a

reliability level of 0.999(1-1/1,000 = 0.999).

During software development, metrics are applied to software products, and a metric

score is calculated for the appropriate factors. This metric score is an estimation (or

prediction) of what the quality level will be for the final product. Figure 3.1 -1

indicates the timeframes during which rating values are estimated through metric

scores (closed box) and the timeframes during which rating values can be assessed by

using actual data and the rating formula (dotted box). For example, the rating value

for reliability is estimated by using metric scores during software development.
During operational testing and evaluation and during production and deployment,

actual data on number of errors per lines of code become available to assess the rating

and evaluate predictions made during development. Exact correlations between

metric scores and rating values have not been established. Research has only shown

that higher metric scores during development result in higher quality end products.

Table 3.1-2 shows a range of values for each rating formula that might occur when .

using actual data (e.g., during production and deployment) to assess rating values. The

values shown are hypothetical.

The following paragraphs describe the factors and rating formulas in each acquisition

concern category.

3-5

S



APPL (A W,.
PHAS Nl'AL USE Of PRODoCT NEWUSE OF PRODUCT

(,}'(EPNSC F AAE OR PA IONL TE TNU PROTITU'. NO OET.NAPE OPRTONAt TESTING COTO.aO
Tf vI( tEF o LP'ENt AD E ALUA TION DEI OIMFNT 0, (,OPNMENT AND F vALjATON DEPLOT SEN

PERFORMANCE

EFFIOIEN(TY

INTEGITY

AELIAE,,TT [ SAME AS FOR ,N T'A
USF ASEEOsURELD

SURVIVABILITY

LCPRRET"ESS I
MAINTANAHILIT Y Lll ASO111,11D

AD APT ATIO N

. NIt .... AILIT [ (AP) _AR_

Figure 3.1-1 Rating Estimation and Rating Assessment Windows

3-6

S



TPable 3.1-2 Quality Factor Ratings

Quality factor Rating formula Rating information

E fficency 1- Actual utilization Value 0 1 0 3 0 5
Allocated utilization %7 utilization 90% 70%1 50%

Inert - Errors Value 0)9995 09997 09999
Integrity ____ Lines of code Errors/LOC 5/10.000 3/10,000 1/10.000

Reliability 1 - Errors Value 0 995 0997 0999
Lines of code Errors/LOC 5/1,000 3/1,000 1/1.000

Survivability 1 - Errors Value 0.9995 0,9997 09999
Lines of code Errors/L-OC 5/10.000 3/10,000 1/10.000

Usability 1- Labor-days to use Value 0 5 0 7 097
* ________ Labor-years to develop Days/years 5110 6i'20 10/100

Corctes - Errors Value 09995 0 9997 0 9999
Lines of code Errors/LOC 5/10.000 3/10.000 1/10.000

Maintainability 1 - 0. 1 (average labor- Value 08 0 Q9
daivs to fix Averace laoor-aavs 2 0 1 0 0 5

veiiaiit - Effort to verify Value 0 4 0 5 06
Verifiability_ I_ Effort to develoo % / effort 609a 50% 40%?/

Exadaiit - Effort to exoand Value 08 09 095

________ Effort to develoo % effort 20%/ 10%1/ 5%
'I. ~ ~ Fexibiiity 1- 0.05 (average labor- A q..f~..... n~.... CS.

_____________days to change) Ave ageaor-oiays 4 0 1

Introerbiit 1 Effort to couole Value 09 095 099 .. ,.-

ntrprblt 1- Effort to dlevelop % effort 10 5 1

Potblt - Effort to transport Value 09 0,95 099

Effort to deveioo 0% effort 10 5 1
Resblt - Effort to convert Value 04 06 08

Effort to develop- N effort 60 40 20

3-7



Performance. Performance quality factors deal both with the ability of the software

to function and with error occurrences that affect software functioning. Low quality

levels predict poor software performance. These quality factors are efficiency,

integrity, reliability, survivability, and usability.

Efficiency deals with utilization of a resource. The rating formula for efficiency is in

terms of actual utilization of a resource and budgeted allocation for utilization. For

- example, if a unit is budgeted for 10% available memory and actually uses 7%, the

rating formula shows an efficiency level of 0.3 (1 - 0.07/0.10 = 0.3).

Integrity deals with software security failures due to unauthorized access. The rating

formula for integrity is in terms of number of integrity-related software errors

occurring during a given time (e.g., during operational testing and evaluation) and total

number of executable lines of source code. This formula is similar to the formula for

reliability; the difference is that reliability is concerned with all software errors, and

integrity is concerned only with the subset of errors that affect integrity. For

example, if three integrity-related errors per 10,000 lines of code occurred during

operational testing and evaluation, the rating formula shows an integrity level of
0.9997 (1 - 1/10,000 = 0.9997).

Reliability concerns any software failure. The rating formula for reliability is in

terms of total number of software errors occurring during a specified time and total

number of executable lines of source code. For example, if three errors per 1,000

lines of code occurred during operational testing and evaluation, the rating formula

shows a reliability level of 0.997 (1 - 3/1,000 0.997).

-. The concern with survivability is that software continue to perform (e.g., in a

degraded mode) even when a portion of the system has failed. The rating formula for

survivability is in terms of number of survivability-related errors (the subset of errors

that affect survivability) occurring during a specified time and total number of -1

executable lines of source code. This formula is similar to the formula for reliability.-.

Usability deals with relative effort involved in learning about and using software. The

rating formula for usability is in terms of average effort to use software (to train for

using it and to operate it) and original development effort. This formula considers size

3-8

- .. .. -S. - _ -._ ° . .t. .. . "



of the software system in rating usability. It is recommended that effort to use be

expressed in labor-days and effort for original development be expressed in

labor-years to maintain a scoring range consistent with that of other factors. For
example, if 10 labor-days were required for training on a system that required 100

labor-years to develop, the rating formula shows a usability level of 0.9

( - 10/100 = 0.9); and if five labor-days were required for training on a system that

required 10 labor-years to develop, the rating formula shows a usability level of 0.5

(- 5/10= 0.5).

Design. Design quality factors deal mainly with software failure and correction. Low

quality levels usually result in repeating a portion of the development process (e.g.,

redesign, recode, reverify); hence the term design. The factors are correctness,

maintainability, and verifiability.

Correctness deals with the extent to which software design and implementation

conform to specifications and standards. Criteria of correctness (completeness,

consistency, and traceability) deal exclusively with design and documentation formats.

Under the three criteria there are no metrics dealing with content material affecting

software operation or performance. The rating formula for correctness is in terms of

number of specifications-related and standards-related errors that occur after formal

- release of the specifications and standards and total number of executable lines of

source code. This formula is also similar to the formula for reliability; the difference

is that correctness is concerned only with that subset of errors related to violations of

specified requirements and nonconformance to standards.

Maintainability is concerned with ease of effort in locating and fixing software

failures. The rating formula for maintainability is in terms of average number of

labor-days to locate and fix an error within a specified time (e.g., during production

and deployment). For example, if an average of 0.5 labor-days were required to locate

and fix errors during production and deployment, the rating formula shows a

maintainability level of 0.95 (1 - (0.1 x 0.5) = 0.95). _

Verifiability deals with software design characteristics affecting the effort to verify

software operation and performance. The -ating formula for verifiability is in terms

of effort to verify software operation and performance and original development

3-9..



effort. This formula is similar to the adaptation, effort-ratio formulas. For example,

if 40% of the development effort is spent reviewing and testing software, the rating

* formula shows a verifiability level of 0.6 (1 -0.40/1.00 0.6).

Adaptation. These quality factors deal mainly with using software beyond its original

requirements, such as extending or expanding capabilities and adapting for use in

another application or in a new environment. Low quality levels predict relatively

high costs for new software use. Quality factors are expandability, flexibility,

interoperability, portability, and reusability.

Expandability deals with relative effort in increasing software capabilities or

performance. The rating formula for expandability is in terms of effort to increase

software capability and performance and original development effort. For example, if

five labor-months were spent enhancing software performance for software that

originally took 100 labor-months to develop, the rating formula shows an expandability

level of 0.95 (1 - 5/100 = 0.95).

Flexibility deals with ease of effort in changing software to accommodate changes in

requirements. The rating formula for flexibility is in terms of average effort to

change software to satisfy other (i.e., new or modified) requirements within a

specified time. For example, if an average of one labor-day was required to modify

software functioning during operational testing and evaluation, the rating formula

shows a flexibility level of 0.95 (1 - (0.05 x 1) = 0.95).

Interoperability is concerned with relative effort in coupling software of one system to

software of one or more other systems. The rating formula for interoperability is in

terms of effort to couple and original development effort and is similar to the formula

for expandability.

Portability deals with relative effort involved in transporting software to another

environment (e.g., different host processor, operating system, executive). The rating

formula for portability is in terms of effort to transport software for use in another

environment and original development effort and is similar to the formula for

expandab ility.

3-10

* . . .



- - - - - - -' . " . - - . . . c.'

"* Reusability is concerned with relative effort for converting a portion of software for

use in another application. The rating formula for reusability is in terms of effort to

convert software for use in another application and original development effort and is

similar to the formula for expandability.

If adaptation effort is greater than original development effort, the effort-ratio

formulas will yield a quality level value less than zero. In this case, the quality level

value is assigned to zero. (This situation is considered unlikely because it would

probably be less expensive to develop a new product than to adapt an existing one.)

3.1.1.2 Changes

* Only eight of the 13 factors had rating formulas that were validated during prior

contracts. Rating formulas were developed for the remaining five factors: efficiency,

integrity, usability, correctness, and verifiability. Format for new formulas conforms

to that for prior formulas (see Tbl. 3.1 -1). The term "man-days" was changed to the

neutral term "labor-days" for maintainability and flexibility.

Factor definitions were changed for correctness and flexibility. The definition of

correctness was changed from "Extent to which the software satisfies its

specifications and fulfills the user's mission objectives" to "Extent to which the

software conforms to its specifications and standards". The reason is that attribute

criteria (completeness, consistency, and traceability) deal exclusively with design and

documentation formats. No attributes deal with content material affecting operation

or performance (i.e., attributes do not deal with satisfying specifications or fulfilling

user mission objectives). The definition of flexibility was changed from .• .extending

the software missions..." to ". . .changing the software missions. . ." because

extension of capability is the domain of expandability.

The phrase "within a specified time period" was added to the definitions of integrity,

reliability, survivability, and maintainability. Examples of time periods are during ! I
operational testing and evaluation and during the first year of operation and

maintenance. Current literature emphasizes use of a definite time period for

reliability modeling. Minor wording changes were made to factor definitions for the

sake of consistency and clarity; intent of definitions was not changed. . .

3-11

.- . . . -



Table 3.2-1 Software Quality Factors and Criteria

ACOUISITION CONCERN PERFORMANCE DESIGN ADAPTATION

FATRARNM E I 5 U C M V E F P R
A FATRARNM F N E U S 0 A E K N 0
C F T L R A R I R P E T B U

O I E I V B R N I A X E T S
uC G A I I E T F N I R A A

I R B V L C A I D B 0 8 B
S E I I A I T I A A I F I I

N T IL a T N N B B L E L L
TC V I I V E A I I I B Ry T L S5 B L L T A T I

O I 5 I I I Y B Y
N T I. T T

Y I Y Y L
C T

OY T

C

0 CIFTEIRION'ACRONYM E I R S U C M V E F I P R
N1 F IS L V S R A E X X P 0 U

ACCURACY AC x

c ANOMALY MANAIEVIENT AM x x
* R AUTONOMY ALIU

F ,S-R;BuTE0NESS DI x

EP-ECTIVENESS COMMUNICATON E: x

MY EFFECTIVE NESS -PROCESSNG ED x
A EFECTlVENESS S'ORAGE SS K
N OPERABILITY OF A

E RECONFIGUPABIL-Ty R
SYSTEM ACCESSIBIL17Y 5S x

E COMPLETENESS Co
S (ONS.STECY CS A x

RACEABILITY TC x
VIs BIIFY isK

APPLiCATION INDEPENDENCE AD A

A AUGMENTABILITY AT K

D COMMONALITY CIL A
A CUI'MENT ACCESSIBIL-TY DO K

FUNCTIONAL OVERLAP FO K

A FUNCTIONAL SCOPE FS K
T G5f'JERA.ATV CE A K
I NDE-FNDENCE ID A K K

0 SYSTiM CLARITY STK
N

SYSTEM COMPATIBILTY SY K
ORI'iJALTY VR K

E SEF DESCRIPTIVENESS SO

E SiMPLICTY SI K

3-12



-'

3.1.2 Quality Factor Interrelationships

Relationships exist among quality factors; some relationships are synergistic and

others conflicting. Specifying requirements for more than one type of quality for a

product can possibly have either a beneficial or an adverse effect on cost to provide

the quality. Factor interrelationships are discussed in Section 4.0 because this aspect

of the framework was enhanced when developing specification procedures during

Task 3.

'' 3.1.3 Quality Factor Relationships to Life-Cycle Phases

When using QM technology in acquiring a product, additional costs are associated with

quality-related activities during software development. Benefits are also possible

during software development and subsequent phases. Costs and benefits will vary for
different factors, different factor combinations, and different activities within the

1 life cycle. Relationships of quality factors to life-cycle phases are discussed in
Section 4.0 because this aspect of the framework was enhanced when developing

- specification procedures during Task 3.

3.2 SOFTWARE QUALITY CRITERIA

3.2.1 Description

Criteria are software-oriented terms representing software characteristics. Software

quality criteria can be grouped under the same three acquisition concerns as quality
factors: performance, design, and adaptation. Table 3.2-1 shows the relationship of

criteria to quality factors. Four categories for criteria are shown: performance,
design, adaptation, and general. Each criterion is an attribute of one or more quality

factors. The criteria in the first three categories are solely attributes of factors
* within the same acquisition concern (i.e., performance, design, and adaptation).

Criteria in the fourth category are factor attributes within more than one acquisition
*

concern.

Criteria and factors within each category are listed alphabetically for easy

referencing. Alphabetizing by name or by acronym gives the same sequence. Criteria

* definitions are listed in Table 3.2-2.

3-13

2A--" -



i - .-- " *. *

Table 3.2-2 Quality Criteria Definitions

ACQ-~UISI-
TION

CON- CRITERION ACRONYM DEFINITION
CERN-

ACCURACY AC * Those cndracteristucs of scrtware which Provide the required precision in
cdiu laticns arI Outputs

AOMALY MANAGEvENT AM! e Tnose cnaractelstcs ot software wnich orowde for continuity of operations
urider ano recovery from non-nominai conoitons

AUTONOMY AL' * ,Thse craracterstcs of software which determine its non-coepenoency on
p inter-aces and functions
E DSTRIUTE DNESS Di 9 Tiose cnaracteristics of software which oetemrne the dlecree to whicn softwarefunctions are geograonically or logically separated within the system.R EFFECTIVENESS-COMM EC 9 Those characteristics of the software wnicn provide for minimum utilization of
F comrmunications resources in cerfoning Tunctions

O EFFECTIVENESS-PROCESSING EP 9 Those characteristics of tne software wnich provide for minimum utilization of
processing resources in performing functionsR EFFECTIVENESS-STORAGE ES Those characteristics of the software whic provide for minimum utilization ofMStorage resources 4

A OPERABILITY OP 9 Those cnaracteristics of software which determine operations and procedures
N concerned with operation of sortware ann wnicn Provide usefui inputs and

Outputs which can be assimilatedRECCONFIGURABILITY RE • Those characterlstics of software which provide for continuity of system
operation when one or more processors. storage units. or communication links
falls

SYSTEM ACCESSIB!LITY SS a Those characteristics of software which provide for control and audit of access to
the software and data

TRAINING TN 0 Those characteristics of software which provide transition from current operation
and provide initial familiarization

0 COMPLETENESS CF e Those characteristics of software which Provide full implementation of the
functions required

CONSISTENCY CS & Those cnaracterlstics of software which provide for uniform design and
Smpiemennion techniclues and notation

I TRACEABILITY TC 6 Those characteristics of software which provide a thread of origin from the
G imoiementation to the reQuirements witn respect to the soecified development

etiveiooe and operational environmentN VISIBILITY VS 0 Those characteristics of software which Provide status monitoring of the

deveiooment and operation

APPLICATION INDE PENDE NCE AP 0 Those cnaracteristics of software which detemrine its nondependency on
dataoase system microcode. computer architecture. and algorithms

AUGMENTABILITY AT 0 Those characteristics of software whiCh provide for expansion of capability for
functions and data

COMMONALITY CL 0 Those characteristics of software which provide for the use of interface standards
A for Protocols, routines, and data representations

DOCUMENT ACCESS;BILITY DO * Those characteristics of software which provides for easy access to software andDselectve use of its components
A FUNCTIONAL OVERLAP FO 0 Those characteristics of software which provide common functions to both
P systems
T FUNCTIONAL SCOPE FS a Those characteristics of software which provide commonality of functions among
A GENERAIYFE applicationsA- GENERALITY FE * Those characteristics of software which provide breadth to the functionsT Performed with respect to the apDication

*I INDEPENDENCE ID * Those characteristics of software which determine its non-dlependlency on
0 software environment (comouting system, operating system utilities. input.
N S AOutput routines libraries)

SYSTEM CLARITY ST e Those characteristics of software whclh provide for clear description of program
Se structure in a non-comolex and understandable mannerSYSTEM COMPATIBILITY SY * Those characteristics of software wnich Orovide the hardware. software and

communcation compatibility of two systems

VIRTUALITY VR 0 Those cnaracter'stics of software whiCh present a system that does not require
user kn owledge of the nvscai. logical or toooiocca, cnaracteristics

G MODULARITY MO S Those cnaracteristcS of software which provide a structure of hignly cohesiveSomponents with Optimum couplingSELF DESCRIPTIVENJESS SD * Those characterist ics of software which provide explanation of theN ,implementation of functions
E SIMPLICITY SI * Those characteristics of software which provide for definition and
R impementation of functions in the most noncomolex and understandable
A manner

3-14



- 3.2.2 Changes

. Criteria were categorized under the same three acquisition concerns as quality

factors: performance, design, and adaptation. This was possible because of the

recategorization of quality factors. There were formerly no categories for criteria.

This change simplifies selection of factor attributes.

Both criteria and factors were organized alphabetically within each acquisition ,

concern. Some criteria acronyms were changed so that alphabetizing by name or by

acronym gives the same sequence for easy referencing.

The number of criteria was changed from 30 to 29. Specificity and conciseness were

deleted; metrics for these criteria (formerly SP.A and CO.) were placed under

simplicity (as SI.5 and SI.6, respectively) with metrics that are similar in scope.

Communicativeness was deleted; metrics for this criteria (formerly CM.1 and CM.2)

were placed under operability (as OP.2 and OP.3, respectively) because both deal with _

operational usability. Effectiveness was expanded to three criteria: effectiveness-

communication, effectiveness-processing, and effectiveness-storage. Metrics for

effectiveness were placed under the new criteria. The new criteria were created to

enable differentiation of concerns for communication, processing, and storage

efficiency at the criteria, rather than metric, level.

Minor wording changes were made to criteria definitions for the sake of consistency

and clarity. Intent of the definitions was not changed.

3.3 SOFTWARE QUALITY METRICS

3.3.1 Description

Metrics are software-oriented details of a software characteristic (a criterion). Each

criterion consists of one or more metrics. Each metric is an attribute of only one

4 criterion. Table 3.3-1 lists the name and acronym of each criterion (in alphabetical

" order) and the name and acronym of each metric that is an attribute of that criterion.

Metric acronyms are acronym extensions of the parent criterion. For example, the

acronym for the criterion commonality is CL; the acronym for the three metric

attributes are CL.I, CL.2, and CL.3.

3-15

,' -- : - -,- . - -: ' - " '- . - -'- .2 * -* .- * -/ --.. • '- ." "- -- " - - " - ". ". - ' -".'''. . - , - . .



Jo Table 3.3-1 Quality Metrics Summary

CRITERION METRIC

NAME ACRONYM NAME ACRONYM

ACCURACY AC ACCURACY CHECKLIST AC.1

ANOMALY AM ERROR TOLE RANCE/CONTROL AM.1
MANAGEMENT IMPROPER INPUT DATA AM 2

COMPUTATIONAL FAILURES AM.3
HARDWARE FAULTS AM 4
DEVICE ERRORS AM S
COMMUNICATIONS ERRORS AM 6
NODE:COMMUNICATION FAILURES AM,7

APPLICATION AP DATA BASE MANAGEMENT IMPLEMENTATION AP I
INDEPENDENCE INDEPENDENCE

DATA STRUCTURE AP 2
ARCHITECTURE STANDARDIZATION AP 3
MICROCODE INDEPENDENCE AP 4
FUNCTIONAL INDEPENDENCE APS

AUGMENTABILITY AT DATA STOFPAGE EXPANSION AT. I
COMPUTAl ION EXTENSIBILITY AT.2
CHANNEL EXTENSIBILITY AT.3
DESIGN EXTENSIBIUTY AT 4

AUTONOMY AU INTERFACE COMPLEXITY AU.1
SELF.SUFFICIENCY AU 2

COMMONALITY CL COMMUNICATIONS COMMONALITY CL-1
DATA COMMONALITY CL.2
COMMON VOCABULARY CL3

COMPLETENESS CP COMPLETENESCHECKLIST CP 1

CONSISTENCY CS PROCEDURE CONSISTENCY CS IDATACON15TENC CS2

DISTRIBUTEDNESS DI DESIGN STRUCTURE D 1i

DOCUMENT DO ACCESS TO DOCUMENTATION DO. 1
ACCESSIBILITY WELL-STRUCTURED DOCUMENTATION DO 2

EFFECTIVENESS- EC COMMUNICATION EFFECTIVENESS MEASURE EC.1
COMMUNICATION

EFFECTIVENESS- EP PROCESSING EFFECTIVENESS MEASURE EP I
PROCESSING DATA USAGE EFFECTIVENESS MEASURE EP 2

EFFECTIVENESS-STORAGE ES STORAGE EFFECTIVENESS MEASURE ES.A

FUNCTIONAL OVERLAP FO FUNCTIONAL OVERLAP CHECKLIST FO.1

FUNCTIONALSCOPE FS FUNCTION SPECIFICITY FS 1 7
FUNCTION COMMONALITY FS 2
FUNCTION SELECTIVE USABILITY FS.3

GENERALITY GE UNIT REFERENCING GE.1
UNIT IMPLEMENTATION GE.2

INDEPENDENCE ID SOFTWARE INDEPENDENCE FROM SYSTEM ID 1
MACHINE INDEPENDENCE ID 2

- MODULARITY MO MODULAR IMPLEMENTATION MO I
MODULAR DESIGN MO 2

OPERABILITY OP OPERABILITY CHECKLIST OP"
USER INPUT COMMUNICATIVENESS OP 2
USER OUTPUT COMMUNICATIVENESS OP 3

RECONFiGURABILITY RE RESTRUCTURE CHECKLIST RE 1

SELF-DESCRIPTIVENESS SD QUANTITY OF COMMENTS SD 1
EFFECTIVENESS OF COMMENTS SD 2
DESCRIPTIVENESS OF LANGUAGE SD 3

S' IMPLICITY SI DESIGN STRUCTURE SI
STRUCTURED LANGUAGE OR PREPROCESSOR St2
DATA AND CONTROL FLOW COMPLEXITY SI3
CODING SIMPLICITY S 4
SPECIFICITY SI S
HALSTEAD'S LEVEL OF DIFFICULTY MEASURE Si6

3-16

0..



Table 3.3-1 Quality Mletrics Summary (continued)

CITERION METRIC

NAME ACRONYM NAME ACRONYM

SYSTEM ACCESSIBILITY 55 ACCESS CONJTROL SS.1
ACCESS AUDIT SS2

SYSTEM CLARITY ST INTERFACE COMPLEXITY ST.I
PROGRAM FLOW COMPLEXITy ST,2
APPLICATON1 U.NC-T,0NAL COMPLEXITY ST.3
COMMUNICAT ON COMPLEXITY ST A
STRUCTURE CLARITY ST 5

SYSTEM COMPATIBILITY SY COMMUN!CATION COMPATIBILITY SY I
DATA CO%4PAT;:!L-Tv SY 2
HARDWARE COMPAT!BILITY SY 3
SOFTWARE COVVPAT BILTY SY 4
DOCUMEN;-A-10ON FOR OTI-ERSYSTEM SY 5

TRACEABILITY TC CROSS REFERENCE C- -

TRAINING J TN TRAINING CHIECKLIST -N I

VIRTUALITY VR SYSTEM/lDATA NOEPEND;NCE yRI

VISIBILITY VS UNIT TES7:rG
INTEGRATION TESTING 'IS 2
CSCI TESTING VS 3

3-17

7 i



wo o-

Each metric is defined by one or more metric elements. Metric elements are detailed

questions applied to software products; answers to them enable quantification of

metrics and of the parent criterion and factor. Metric elements are designated by

acronym only (no name) and are listed on the metric worksheets. Acronym designation

is an extension of the parent metric acronym. For example, the 14 metric element

acronyms for the metric CL.I are CL.l (1) through CL.1 (14).

3.3.2 Changes

Several metrics were changed in conjunction with criteria changes, as mentioned in

i Section 3.2.2. The metric of specificity, SPA, was changed to simplicity metric SI.5.

The conciseness metric, CO.I, was changed to simplicity metric SI.6. The two

communicativeness metrics, CM.1 and CM.2, were changed to operability metrics

OP.2 and OP.3, respectively. The four effectiveness metrics were placed under three

new criteria. EF.1 was placed under effectiveness-communication as EC.A. EF.2 and

EF.3 were placed under effectiveness-processing as EP.l and EP.2, respectively. EF.4

was placed under effectiveness-storage as ES.I.

Minor changes were made to metric names to help clarify the characteristic being

measured and to be consistent in naming style. The terms "checklist" and "measure"

were dropped from most metric names because they are misleading; metric elements

are most often a combination of checklist and measurement questions. The term was

retained when the name resulting from dropping the term might be confused with a

criterion name.

Extensive changes were made to wording of metric elements for consistency, clarity,
and ease of understanding. However, the software characteristic being measured by

the metric, as the collection of metric elements, was generally not changed. The

purpose of this enhancement was to enable a better understanding of metric elements

by users. Validity of metrics was not questioned and no new metrics were added.

Many examples were added to metric descriptions to help clarify intent; and

• explanatory information, formerly contained in a separate appendix, was integrated

into the text. Terminology was changed to be consistent with proposed

DOD-STD-SDS; for example, module was changed to unit. Changes were also made to

the worksheets; some format changes affected metric elements and are described in

Section 3.4.

3-18

0

'"-" .- - *
.° -. • *... . ... - - . .. :- . . * -j.- -

:[. .: . . :: : ./ : . .- . -.-- . .. . ., . . .. *. . ... - . .. - . .



Two changes were made at the metric level. Function completeness, formerly FS.3,
was integrated with FS.2, function commonality, as they overlapped in scope.
Function selective usability was changed from DO.3 to FS.3 because this metric deals
with functional scope. The following paragraphs highlight changes at the metric
element level that affect scope of the parent metric. Changes are identified by
metric acronym and name.

AM.7 Node/Communication Failures. The scope of this metric was expanded from

interoperating network nodes to include any interoperating system.

AP.2 Data Structure. The intent of central control of data could not be determined;

so this aspect of the metric was dropped.

AP.3 Architecture Standardization. A standard, 32-bit computer architecture was
unclear and considered inappropriate; so this aspect of the metric was dropped.

AP.5 Functional Independence. One intent of this metric is to determine general
applicability of algorithms (i.e., not unique to one application). A table-driven
algorithm was changed from the only way to achieve functional independence to an
example of one method. The need for comments with algorithm code was considered
the domain of self-descriptiveness and moved to SD.2, effectiveness of comments.

AT.4 Design Extensibility. Performance/price information for enhancement trades is
not typically required in software DIDs; so this aspect of the metric was dropped.

AU.2 Self-sufficiency. The aspect of this metric dealing with word-processing
4 capability was dropped because it deals with development environment rather than the

operational software product.

CL.I Communications Commonality. Uniform message handling was added as a

4 related aspect of network communication. p

CP.A Completeness Checklist. A new element was added to determine whether all
defined data items are referenced.

3-19

* . ... . . .. *, * . : . , ..,. , ..,,. ,



CS.I Procedure Consistency. A new element was added to determine whether all

references to the same function use a single, unique name.

CS.2 Data Consistency. A new element was added to determine whether all

references to the same data use a single, unique name.

DI.I Design Structure. The meaning of logical structure and function being separated

in the design was unclear; so this aspect of the metric was dropped.

EC_ Communication Effectiveness Measure. This metric currently has one element

dealing with specification of performance requirements and limitations. The element

was considered generally applicable to efficiency and was added to metrics EP.I, EP.2,

and ES. I.

EP.A Processing Effectiveness Measure. An aspect of this metric deals with internal

* communication time between software elements (e.g., units). This is not typically - -

measured and may require special tools; so this aspect was dropped. A new element

was added dealing with specification of performance requirements and limitations.

EP.2 Data Usage Effectiveness Measure. A new element was added dealing with

specification of performance requirements and limitations.

ESAl Storage Effectiveness Measure. The element of this metric dealing with virtual

storage was deleted because it is redundant with an aspect of virtuality, VR.1. A new

element was added dealing with specification of performance requirements and

limitations.

o® SD.2 Effectiveness of Comments. The need for comments with algorithm code was

moved to this metric from AP.5, functional independence.

ST.] Interface Complexity. The element of this metric dealing with interface nesting

* levels was deleted because the meaning was unclear....

VS.2 Integration Testing. The element dealing with testing of specified performance

requirements was placed under the metric dealing with performance testing: VS.3,

• CSCI testing.

3-20

0



VS.3 CSCI Testing. The element dealing with testing of specified performance

requirements was moved to this metric from VS.2, integration testing.

3.4 METRIC WORKSHEETS

3.4.1 Description

Metric worksheets are contained in Appendix A. The worksheets contain metric

elements as questions. Software products (specifications, documents, and source

listings) are used as source information to answer questions on worksheets; answers are

then translated into metric element scores (yes = 1, no = 0, and a formula answer

results in a score from 0 to 1). This enables scoring of the parent metric, criterion,

and factor and results in a quality level indication for the product.

Seven different worksheets are applied in different development phases. Table 3.4-1 -

indicates the timeframe during an acquisition life-cycle phase when a worksheet is

used, shows the software level of abstraction at which the worksheet is applied, and

lists key terminology used within the worksheet.

Worksheet 0 is applied to products of system/software requirements analysis. The

worksheet is applied at the system level. (For large systems, software may not be a

discernible component in the design with separate requirements at the system level.

In this case, worksheet 0 is applied at the system segment level.)

Worksheet I is applied to products of software requirements analysis. A separate

worksheet is used for each CSCI.

Worksheet 2 is applied to products of preliminary design. A separate worksheet is

used for each CSCI.

Worksheets 3A and 3B are applied to products of detailed design. A separate

worksheet 3A is used for each CSCI. A separate worksheet 3B is used for each unit of

a CSCI. Worksheets 3A and 3B are applied together; answers on 3B worksheets for

CSCI units are used in scoring the 3A worksheet for that CSCI.

3-21

17-.



Table 3.4-1 Metric Worksheet/Life-Cycle Correlation

* Life-Cycle
* -Phase/ Demonstration

Actvit & alidlation full-Scale Development (FSD)

Systemif Software
Software Requirements Preliminary Detailed Coding & CSC CSCI - Level System

Application Level/ Requirements Analysis Design Design Unit Testing Integration & Testing Integration &
Terminology Analysis Testing Testing

System 0 System ------------------
0 System Metric

function Worksheet
a CSC 0

*CSCI Metric
CSCI Software Worksheet

* functiont

* CSCI I (Selected metric questions are
CSI S olelCCMti I reapplied during the integration

CS~ To-leelCSCMeticI and testing phases as indicated in theWorksheet I quality attribute correlation table in I

* CSCII Appendixs A.)I

* Top-level CSC Metric Metric
CSCI 0 Lower-level Worksheet Worksheet

CSC 3A 4A I
* Unit I

UNIT 0 Unit metric Metric II
Worksheet Worksheet I

38 48 I

3-22

.,



4.*

Worksheets 4A and 4B are applied to products of code and unit testing. Worksheets 4A

and 4B are applied in the same manner as 3A and 3B. A separate worksheet 4A is used

for each CSCI, and a separate worksheet 4B is used for each CSCI unit.

For the remainder of the development cycle, selected metric questions are reapplied

as indicated in the quality attribute correlation table in Appendix A.

Metric worksheets are designed to be applied to software development products

identified in DOD-STD-SDS. The minimum product set is listed by software

development phase in Table 3.4-2. Each product is identified by title and by DID "i

number. Information from the entire set of products for a particular phase is needed
as source material to answer metric questions on the worksheet applicable to that

phase. It is not necessary to specify the complete product set for each acquisition,

only to have equivalent information available to answer worksheet questions. For

- example, when acquiring a small system, information regarding the QA plan and

software standards may be included as part of the software development plan.

3.4.2 Changes

Metric worksheets and metric element questions on worksheets were revised

extensively. Changes were incorporated to enable worksheets to be applied during

phases defined in DOD-STD-SDS to products identified in DOD-STD-SDS.

Terminology was also revised to be consistent with that used in DOD-STD-SDS (e.g.,

unit rather than module and CSCI rather than CPCI). Formulas for relating metric

element data had formerly been contained in a separate appendix; these were

integrated into the appropriate questions on the worksheets. Explanatory material for

clarifying the intent of worksheet questions had formerly been contained in a separate

4 appendix; pertinent explanatory material was integrated into the text of questions, and

examples were included where appropriate. The end result is standalone worksheets

compatible with DOD-STD-SDS.

The baseline framework assumed five general software development phases:

requirements analysis, preliminary design, detailed design, implementation, and test

and integration. Product descriptions for these phases were general. Products for "

phases described in DOD-STD-SDS are described in detail by DIDs (see Tbl. 3.4-2).

3-23

'. - . . - .. .- . * % - - . • . - . - , o .°- o . . . * .* o . . o , . . - , "



i7 - -7 ,, ,. i

0. Table 3.4-2 Software Development Products

Phase/Product Title Applicable DID

* "System/Software Requirements Analysis

System/Segment Specification DI-S-X 101

Software Development Plan DI-A-X 103

Preliminary Software Requirements Specification DI-E-X107

Operational Concept Document DI-M-X 125

Software Quality Assurance Plan DI-R-X10S

Software Problem/Change Report DI-E-X106

Software Standards and Procedures Manual DI-M-X109

Preliminary Interface Requirements Specification DI-E-X I08

Software Requirements Analysis

Software Requirements Specification DI-E-X107

Interface Requirements Specification DI-E-X108

Preliminary Design

Software Top-Level Design Document DI-E-X110

Software Test Plan DI-T-X116

Preliminary Software User's Manual DI-M-X121

Preliminary Computer System Operator's Manual DI-M-X 120

Detailed Design

Software Detailed Design Document DI-E-X1 11

Software Test Description DI-T-X 117

Data Base Design Document DI-E-X113

Interface Design Document DI-E-X112

Coding and Unit Testing

Source Code/Listings (Appendix)

Preliminary Software Test Procedure DI-T-X1 18

CSC Integration and Testing

Software Test Procedure DI-T-XI 18

* CSCI-Level Testing

Software Product Specification DI-E-X114

Software Test Report(s) DI-T-X 119

Software User's Manual DI-M-X 121

Computer System Operator's Manual DI-M-X 120

0
System Integration and Testing

" . Software Product Specification DI-E-X1 14

Software Test Report(s) DI-T-X119

Software User's Manual DI-M-X 121.

" Computer System Operator's Manual DI-M-X 120

3-24

.. 7,

K""" " ". :' " ' .- .. ~ * . . -.-i -" "-.- "" "
• .- .. . . . -. . . . •.



Metric questions were recategorized among worksheets so that questic s can be

answered using specific DIDs as source material. This resulted in many changes in

applicability of metric elements to worksheets and to specific wording of questions.

The end result is worksheets that can be applied to development products identified in

DOD-STD-SDS.

One problem with the baseline worksheets is that CSCI-level and CSCI

component-level questions were mixed on several worksheets. Separation of question

for application to software components or to software configuration items was left to
the user. Creation of worksheets 3B and 4B for application to CSCI units solves this

problem and simplifies scoring using worksheet data.

We worked closely with Dynamics Research Corporation (DRC) in revising metric

questions to be compatible with terminology, phases, and products for DOD-STD-SDS.

DRC had been responsible for drafting proposed DOD-STD-SDS and was drafting a set

of DIDs for the STARS measurement task. A subset of those DIDs was to address

software quality measurement and was to be compatible with Boeing Aerospace

Company (BAC) efforts for the current RADC quality measurement contract (this

contract). DRC produced nine Software Evaluation Report DIDs. BAC produced the

seven worksheets (see Tbl. 3.4-I and App. A). Wording of questions on the DIDs and

, worksheets is nearly identical. There are distinct differences between formats for the

DIDs and worksheets because they differ in purpose.

.

The worksheets and eight of the DIDs are designed to be applied to products of the

eight life-cycle activities identified in Table 3.4-I. The ninth DID is designed to be

applied during system performance testing. Separate worksheets are provided for

system/software requirements analysis through coding and unit testing; questions from

these worksheets are reapplied during subsequent test and integration activities. A

separate DID is provided for each of nine life-cycle activities; metric questions in the

DIDs for test and integration activities are a restatement of questions from prior

DIDs. (In other words, there is only a format difference between worksheets and DIDs

in this respect.) The worksheets include formulas for relating metric element data.

The DIDs collect only raw data and contain no formulas. The worksheets identify each

question by metric element acronym. The DIDs identify parent criterion name and

acronym and metric name and acronym and list questions sequentially under each

3-25

3'P -L 5-"

;.? ,.,? ,. .,.. . ... . .- -. .. ....-..-.. ,.. . .. . ... . .. . . . . . ., ., . ,



-." metric (i.e., no metric element acronyms). CSCI-level questions and unit-level

questions are separated on different worksheets (worksheets 3A, 3B and 4A, 4B). Each

DID contains all questions for one phase and identifies the application level for each

question. Several minor differences occur in metric names (e.g., use of checklist or

measure in the name).

* There are no differences between the worksheets and DIDs in intent or scope of any

* metric. However, there are differences as to when metric questions are applied. The

primary difference is that, although questions in worksheets and DIDs correspond

during early development phases, sometimes a worksheet question is reapplied during a

test and integration phase and this question does not appear on the corresponding test

and integration DID. The primary focus of the joint effort with DRC was rewording

questions. Schedule constraints on DID delivery prohibited comparing and revising

task outputs. Differences in reapplication of metric questions were retained because

of the concern for updating worksheet information that may change during test and

integration activities.

3.5 FACTOR SCORESHEETS

3.5.1 Description

Factor scoresheets are contained in Appendix B. There are 13 factor scoresheets, one

for each software quality factor. Scoresheets are used for translating information at

the metric element level on the worksheets into a quality level score for a quality

factor. Each scoresheet has blanks for the factor and for all attributes of that factor

(i.e., criteria, metrics, and metric elements). Worksheet information is transferred to

the scoresheets at the metric element level. "Yes" answers are scored as 1; "no"

answers are scored as 0; and numeric answers resulting from formulas are transferred

directly to scoresheets (scoring range from 0 to 1). Scores are then calculated for the

parent metrics, criteria, and factor according to the hierarchical (attribute)

relationship indicated on the scoresheet.

3-26

3 -- " ".

' -. ' "- .-. -v* - - .-. *.- . ... " . ..-.-.-. * .- ..- . . -. -. - * .-. • .. -. . - --- -.; '
. :: .: . ..: : .. : .:: : .: :: . . . . -.:. ***-. *.. . . . . * ; ..:



3.5.2 Changes

* The baseline used metric tables for scoring metric elements and metrics. Scoring of

criteria and factorm was left to the user. Factor scoresheets enable all scoring to be

done on one form for each factor: metric elements, metrics, criteria, and factor.

3.6 REFERENCES

The framework elements from the most recent RADC quality measurement contract

(F30602-80-C-0330) were used as the baseline for enhancements. Framework elements

are described in two volumes.

a. RADC-TR-83-175 (Vol. I), "Software Quality Measurement for Distributed

Systems-Final Report", July 1983.

b. RADC-TR-83-175 (Vol. II), "Guidebook for Software Quality Measurement", July

1983.

Current literature, reports, and results of related contracts were examined when

enhancing the framework to identify potential problem areas and suggestions for

change. The following contract reports were useful.

a. Contract F30602-80-C-0265, RADC-TR-83-174 (Vol. 1), "Final Report - Software

Interoperability and Reusability", July 1983.

b. Contract F19628-80-C-0207: (1) ESD-TR-82-143 (Vol. 1), "Introduction and General

Instructions for Computer Systems Acquisition Metrics Handbook", May 1982; and

,. (2) ESD-TR-82-143 (Vol. II), "Quality Factor Modules-Computer Systems

Acquisition Metrics", May 1982.

c. Contract DAAK80-79-D-0035, MD-81-RAPS-002, "Radar Prediction System Metric

Evaluation", November 1981.

' '

3-27

. --°.. ii 2-i .. . ..? -.i i ...- i - . - . •• • • ,• - .. . . . - . .. . . .. . . .. ..-..... .-.. .-.



.4

2-~

-V.

9

0

U
N

0

. . - .

- - , * -. . . .



4.0 QUALITY METRICS METHODOLOGY

This section summarizes results of Task 3, Develop Methodology. The methodology
from the most recent RADC quality measurement contract (described in
RADC-TR-83-175) was used as a baseline. This baseline was extensively revised and
enhanced. The focus of enhancing the methodology was to provide an acquisition

manager a means for determining and specifying quality factor requirements for
command and control applications. Emphases were placed on (1) techniques for
choosing appropriate factors and quality-level requirements through considering
quantitative assessments of factor interrelationships and factor life-cycle costs, (2)
procedures for specifying requirements, and (3) procedures for analyses of quality

mesurement data.

The methodology, procedures, and techniques are documented in Volume II, Software
Quality Specification Guidebook. Because enhancements to the quality framework and
methodology were extensive, a second guidebook was developed to address the needs
of data collection and analysis personnel. Procedures for data collection, analysis, and
reporting are contained in Volume Il, Software Quality Evaluation Guidebook. A
specification of format and content for a report describing results of evaluation of
software quality was also developed. The specification is in data item description i--

(DID) format in Appendix C.

4.1 OVERVIEW S

The following paragraphs provide an overview of the quality metrics (QM)
methodology. Subsequent sections highlight features of the methodology and
procedures developed for this contract. J

Figure 4.0-1 shows the QM methodology in two major parts: software quality
specification and software quality evaluation. Specification is the responsibility of the
software acquisition manager and includes specifying software quality requirements .
and assessing compliance with those requirements. Results of the compliance :-. -

assessment are used to initiate corrective action. Thu specification guidebook,

Volume II, provides procedural guidance. Evaluation is the responsibility of data

4-1 ""-1. ° -



SOFTWARE QUALITY -COMPLIANCE -
SPECIFICATION ASSESS COMPLIANCE VARIATIONS

GUIDEBOOK WITH REQUIREMENTS

--------- SPECIFY SOFTWARE REQ SEMET
--------------------------- QUALITY_ REQUUIREMENTS

SYSTEM NEEDS ..... , ULT EURMNSSPECIFICATION

SOFTWARE QU LT PC ICfIATION ------------

*SYSTEM,/SOFTWARE

___________________________ * DEVELOPMENT
AND REVIEW

APPLY SOFTWARE ~ - YT~SFwR
QUALITY METRICS PRTEJOUTSAR

SOFTWARE QUALITY
EVALUATION ---- ~
GUIDE BOOK

ASSESS PRODUCT SOFTWARE QUALITY
QUALITY LEVELS EVALUATION

REPORT

SOFTWARE QUALITY EVALUATION

Figure 4.0-1 Software Quality Specification and Evaluation Process

7-

4-2



collection and analysis personnel and includes applying software quality metrics to

,.j products of the development cycle, scoring product quality levels, and reporting

results. The evaluation guidebook, Volume I1, provides procedural guidance.

The process begins early in the system life cycle-usually during system demonstration

and validation. We assume that a description of the nature of the system and system

needs or requirements exists. This description could be a statement of work or a draft

system specification and is the primary basis for identifying software quality factor

requirements. A series of procedural steps is performed to determine specific .-

software quality needs and to specify quality requirements. Steps include polling

groups such as the Air Force using command and the Air Force Logistics Command

(AFLC) in order to provide a comprehensive set of operational and support quality

requirements from a quality factor point of view. These steps could be performed by

the SPO or the development contractor or through awarding a separate contract.

Software quality requirements are entered into the system requirements specification

and are treated as contractual obligations (just the same as technical requirements).

As the system contractor proceeds with development, quality requirements from the

system requirements specification are allocated to lower level specifications and

finally assigned to units within the software detailed design document in a manner

s.milar to that for other requirements. This requirements flow is shown in Figure

4.0-2. Each time during the cycle that a development product is released (usually at

major review points such as system design review (SDR), software specification review

(SSR), preliminary design review (PDR), and critical design review (CDR)), quality

*" metrics, in the form of metric worksheets, are applied to the products. Raw data are

then used to calculate scores indicating quality level achieved for each quality factor,

and these scores are compared to specified requirements.

,*[ Application of metrics and scoring of achieved product quality levels are performed by -

the development contractor to show compliance with quality requirements. It is

anticipated that product evaluation will also be performed in parallel by another group

such as an IV&V team, the AFPRO, SPO Software Engineering, or Product Division

Software Quality Assurance, as is discussed in Section 2.3. Data collection and

analysis results are documented in a Software Quality Evaluation Report (see App. C).

This report is reviewed separately at major review points. The report is included in p

4-3

4 S

. ..*.* *- ..* *. ..



SRR SOR SSR PDR CDR EQUIVALENT

17 17 '7 7 SPECIFICATION

LEVELITh'PE
% (MIL-STD-490)

SOFTWARE SYSTEM AQUALITY 'A=l j

REQUIRMENTS REQUIREMENTS
REQUIREMENTS REMIFNCATIN ALLOCATION OF QUALITY

REQUIREMENTS TO SYSTEM
SEGMENTS

S SYSTEM -

II, . .SEGMENT
OE-:N IALLOCATION 

OF QUALITY REQUIREMENTS
TO SOFTWARE AND HARDWARE Ci's

B-S
HARDWARE SOFTWARE

., " - REQUIREMENTS ,IREQUIREMENTS"" "

i- .SPECIFICATION i SPECIFIC TI.O . .ALCATIONOF UA TY" " -
ALLOCATION OF QUALITY

""__ - .. REQUIREMENTS TO

SOFTWARE COMPONENTS (WITHIN CSCI'S) .,

SOFTWARE TOP- CS
LEVEL DESIGN

DOCUMENT ASSIGNMENT OF .=
QUALITY

REQUIREMENTS TO

SRR SYSTEM REQUIREMENTS REVIEW UNITS CS

SDR= SYSTEM DESIGN REVIEW SOFTWARE
SSR =SOFTWARE SPECIFICATION REVIEW DETAILED DESIGN

PDR = PRELIMINARY DESIGN REVIEW : DOCUMENT

CDR= CRITICAL DESIGN REVIEW
= SEPARATE SPECIFICATION NOT ALWAYS USED

Figure 4.0-2 Flow of Software Quality Requirements

4-4

I~~~~~~ ~~~~.......- ........ ........-.... , -:.. : . . ,, ,. •o. .



the review package released before the review date. The SPO uses these results to

assess compliance with quality requirements and (1) approves or disapproves of

compliance variations at the review and/or (2) respecifies quality requirements and

ensures that changes are reflected in the system requirements specification.

Advantages of this methodology include:

a. Quality factor requirements are determined concurrently with technical

performance and design requirements-increasing the likelihood of a comprehensive

i- - set of requirements which can be satisfied within allocated schedule and budget.

b. Requirements are allocated in a manner similar to the technical performance and -i -]

design requirements-allocations can be checked from the system-level downward,

and all lower-level requirements should be traceable.

c. Progress on achieved quality levels is assessed periodically-enab!;ng corrective

action to be taken in a timely manner.

d. Reporting of data collection and analysis results is comprehensive-providing

adequate information for decision-making on a course of corrective action.

4.2 FEATURES

This section highlights features of the methodology and procedures developed or

enhanced during this contract to support determining and specifying quality

-' requirements. For a complete description of procedural steps, refer to Volume 11,

specification guidebook.

System-Level Focus. Specification of requirements is focused at the system rather

than software (CSCI) level. Quality requirements for software are derived by

examining a system description during system/software requirements analysis, so that

requirements reflect system and user needs.

-" Software quality factor requirements are specified for each system level function that

is supported by software. This enables freedom in designing software to optimally

meet the needs of all applicable system-level functions, yet ensures that all

.* system-level quality requirements are satisfied by the software design. This approach

parallels the approach to specifying and allocating technical performance and design

4-5

' . ' *



I Tp

* requirements and increases the probability of obtaining a complementary set of

*technical and quality requirements that are realistic. This approach also avoids

* developing high quality levels for parts of the software not requiring high quality; this
* situation can occur when requirements are specified for software as a whole, rather

* than functionally.

Procedural Levels. Procedures are organized by quality level-of -detail. Separate

procedures are provided for specifying requirements for factors, criteria, and metrics.-

This approach parallels attribute levels in the hierarchical software quality model and

simplifies procedures.

4 Quality Goals. Three categories of importance (quality goc.. levels) are used when

specifying quality factor requirements: excellent (E), good (G), and average (A). The

categories enable differentiating among quality level c:ncerns for performing factor

trade studies and avoid the comnplications of using a numeric goal level.

We recommend using a numeric range when stating factor goal levels in specifications,

after trade studies have been completed. Separate ranges can be specified for each

goal level. Different ranges can be specified for different applications and for

different functions within the same application.

Factor Dependencies and Interrelationships. Choosing quality factors and initial goal

levels is primarily a matter of determining and translating system and user needs.

Selecting achievable goal levels for the combination of factors chosen can be a

complicated process because of relationships among factors. We developed detailed

* procedural steps to aid the acquisition manager in developing a realistic set of quality

goals. Positive and negative factor interrelationships are quantified to indicate the

* degree of affect among factors.

* Cost Considerations. Selecting achieveable goal levels also involves considering costs.

Developing high quality levels most often requires additional budget during the early

phases of full-scale development (IFSD) and most often results in cost savings (or cost

- avoidance) during production and deployment. We developed a detailed analysis of

quality-related activities potentially affecting software life-cycle costs for each

factor. Procedures aid the acquisition manager in determining relative cost variations

4-6



AD-Ai53 988 SPECIFICATION OFBSOFTWARE QUALITY ATTRIBUTES VOLUME 1 2/'2
FINAL REPORT(U) BOEING AEROSPACE CO SEATTLE WA
T P BOWJEN ET AL. FEB 85 Di82-11678-1

I UNCLASSIFIED RADC-TR-85-37-VOL-1 F38682 82 C 6137 F/G 9/2 H

mhhmmhhhhhil



I -- II...-.

k•4. -. 7- Z7727

111111112.2

-am-

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS -963 A

40
.p

- - .
o

. f..

,__,t. 
* -.

.. ,,"., .. , . . ... -. -.. . .. . ... -.. . . .. .. ..-. .. .. ' - . .. . - - -, ._- ,._, - .



*L
for the set of quality factors chosen and for refining quality goal levels based on cost

effects of positive and negative factor relationships.

Criteria Weighting. Criterion attributes of a factor may require different emphasis,

depending on the application and set of factors chosen. Weighting formulas are used

to show the specific relationship between a factor and its attribute criteria. Each

criterion is assigned a weighting value to indicate its percentage contribution to the

overall factor goal. This approach communicates the desired emphasis on software

characteristics for development and states the formula required for scoring.

We developed detailed procedures to aid the acquisition manager in determining the
J

appropriate emphasis on each attribute criterion. Procedures include considerations of

the application and effects of factor interrelationships at the criterion level.

Software Quality Evaluation Report. One important aspect of the QM methodology is

ensuring that quality requirements have been satisfied. The iterative nature of the

methodology ensures that the acquitions manager has ample opportunity to take

corrective action in a timely manner. The Software Quality Evaluation Report

provides the manager with adequate information to assess compliance with

requirements and to decide an appropriate course for any corrective action.

This report is contained in Appendix C in DID format. It requires that raw

measurement data, scoring data, scoring trends, analyses information, and corrective

recommendations be provided for all software quality factor requirements....

Command and Control Example. An example is used throughout the specification . ,

procedures for a command and control application. Procedural steps are applied to the

example system and results are explained. A large-scale command and control system

was used, and personnel familiar with system-level and software-level requirements

and design were consulted. This approach aided in developing realistic procedures and

provides the acquisition manager with an added depth of information.

4-7

-. ... " -.

.-" .. ... ....S ... .... -? - .- .. - . :.... --... . . .. ..... .......... ." ... -. . ..° . . . • ..



.• y - . .- r.v- .- °--

5.0 VALIDATION PLAN

This section summarizes results of Task 4, Develop Validation Plan. The purpose of

this task was to prepare a plan for validating the methodology and procedures for

determining and specifying software quality requirements. The methodology and .....

procedures were developed in Task 3 and are documented in the specification

guidebook (Vol. II). The following paragraphs describe an approach for evaluating the .

usability of the specification methodology and procedures within the software

acquisition management process.

The goal of the methodology is to enable an acquisition manager to acquire a software

product which satisfies user quality needs. There are two major parts to the process:

specifying software quality requirements and evaluating achieved software quality

levels. Quality requirements are specified early in the software development process

and are included with performance and development requirements. Achieved quality

levels are evaluated at key review points in the development process such as PDR and

CDR. Success of the methodology depends not only on determining and specifying

realistic quality requirements and obtaining objective evaluations of achieved quality

levels but also on responding to scoring that indicates a variation from specified

quality requirements. This nay involve redirecting development efforts and

reevaluating specified quality requirements in order to acquire a final product which

satisfies quality goals.

Validation efforts should focus on clarity, applicability, and effectiveness of the

methodology and support material (specification guidebook, procedures, figures,

tables, and Software Quality Evaluation Report). The methodology should be applied

during the development phases of at least two projects, concurrently. Projects should

be medium-sized command and control applications. (Application to large projects

may involve extraneous complexity; application to small projects may not validate --

applicability.) Project development phases and review points should be compatible .. -

with those defined in DOD-STD-SDS. Information required by system and software

deliverables should be compatible with information required by DIDs listed in Table .-

3.4-2.

5

5-1

* . . . . . . . . .. . .-. .



.V... .. -
°

A rating scheme should be developed to evaluate the methodology and support

materials and consider the following, at a minimum:

a. Usability of the methodology within the acquisition management process and

soundness of approach.

b. Relative ease of learning, understanding, and applying procedures.

c. Clarity and completeness of procedures.

d. Clarity and completeness of software quality factors and criteria.

e. Appropriateness of metrics selected for use.

f. Reasonableness of specified software factor goals and criteria weighting.

g. Completeness and clarity of Software Quality Evaluation Report.

h. Completeness of compliance assessment.

i. Effectiveness of actions taken for compliance variations.

Questionnaires should be used to support the rating process.

Records should be maintained and should include:

a. Problems encountered with the methodology and its implementation.

b. "Side effect" problems resulting from introducing the methodology into an existing

process (e.g., conflict of technical requirements and quality requirements).

c. Costs and schedules associated with implementing the methodology, by phase.

d. Risks identified with implementing the methodology.

e. Unexpected benefits of the methodology.

f. Qualifications of personnel associated with the effort.

Showing success of this methodology depends, in part, on correlating specified quality

with the achieved quality; and this depends, in part, on validity of the quality metrics

used. Since not all metrics have been validated, evaluations of achieved quality should

be supported by independent assessments (e.g., questionnaires) and factor rating

calculations whenever possible. This will minimize the possibility of variations in

results due to the metrics themselves rather than the methodology.

5-

- 5-.

6: ___..



6.0 RECOMMENDED REVISIONS

9 4i
This section describes recommended Air Force documentation updates resulting from
Task 6, Recommend Revisions. Content and wording changes to documentation used

bv an Air Force System Program Office (SPO) are recommended in order to implement .:

quality metrics (QM) technology in the software acquisition process. Secticn 2.0
describes the role of QM technology in software acquisition; recommended revisions in
the following sections ensure that pertinent aspects of QM technology are identified as
specific required elements in software acquisition.

6.1 REVIEW AND RECOMMENDATION PROCESS

Documentation considered for review includes regulations, directives, specifications,

standards, guidebooks, and data item descriptions (DID). The purpose of these

documents in the acquisition process is to establish common directions and goals for
both government and contractor personnel. There are two basic document categories:

internal and compliance.

Regulations, directives, and guidebooks are internal documents and only apply to

government personnel. These documents define roles and responsibilities of
government personnel during the acquisition process and identify what should be
required of a contractor. These documents are not binding on a contractor.

Standards, specifications, and DIDs are compliance documents and impose

requirements on a contractor. They direct what the contractor must do during the .

acquisition process. Change recommendations in the following sections are influenced

by the scope of effect of each document.

The first step was to compile an initial list of internal and compliance documents

potentially impacted by the implementation of QM technology (see Tbl. 6.1-1).

Guidebooks and proposed Department of Defense (DOD) standards were later added to
the list. Guidebooks were added because they recommend practices influenced by QM

technology. Proposed DOD software standards were added because of the planned
influence on software acquisition. Two proposed standards were added: DOD-STD-
SDS and DOD-STD-SQS (formerly DOD-STD-SQAM). DOD-STD-SDS is now available

6-1 "

.- .- ..
" . . - ,

t l, - " ' "- ' ' - ~ - * U . - "'w * . . . - -



Table 6.1-1 Candidate Documents

TYPE NUMBER TITLE

DOD 4120 3-M Standardization of Policies. Procedures and instructions
0000 5000 I Major System Aautsitions
0000 5000 2 Major System Aquisition Process ---
DO0D05000 3 Test and Evaluation
DODD 5000 19 Policies for the Management and Control ot DOD information

Requirements
DOD Document 000 5000 19-L.Volumel11 Acquisition Management Systems and Data Requirements

Control List IAMSDILt
N DODD 51010029 Managerment of Company Resources in Major Detense Systems
T DODD 5000 31 interim List ot DOD Approved High Order Programming
E Languages (IIOL)
R DODD 5010 12 Management of Technical Data
N 0000 50101f9 Configuration Management
A DOD 7935 1.5S Automated Data Systems Documentation Standards
L AFR 65-3 Cornfiguration Management

APR 73.1 Detense Standardization Program
AFR-74.t Quality Assurance Program
AFRBO014 Research and Devetopment Test and Evaluation
APR 300-2 Management ot the USAF Automatic Data Processing Program
APR 800.2 (Cl) Aquisition Management - Program Management

AF Regulation APR 800-3 Engineering tor Detense Systems
APR 800-4 Transter ot Program Management Responsibility
APR 800. 11 Life Cycle Costing (LCC)
APR 800.1 4,Volume t Management of Cornputer Resources in Systems
APR 800-I1 4,Volume 11 Aquisitrori and Support Procedures tot Computer Resources in

Systems
APR 800- 19 System or Equipment Turnover
MIL-0-9858A Quality Program Requirements

Military Specifcation MIL-S-52779 Softwsare Qualityr Assurainte Program Requirements
C MIL S 83490 Specifications, Types and Forms
0 Mlt -STD-1 30E identitication Marking ot US military Prorerty
M MIL-STD-450 Contiguration Control - Engineering (Changes. Deviations and
P Warvers L-

L MIL-STD.481A Contiguration Control.- Engineering Changes. Deviations and
Waivers (Short Form)A I*T-8AContiguration Status Accou~nting Data Elements and Related

N Features
C Military Standard MIL STD 483tUSAF) Contiguration Management Practices for Systems. Equipment.
E Munitionis and Compsuter Programs

MIL-S1'D-490 Specitication Practices
MIL-STD-499A Engineering Management
MIL -STD-a8IA Work Breakdown Structures tor Detense Material Items
MIL-STO- 152 tAIUSAP) Technical Reviews and Audits tot Systems. Equipments, and

Computer Prugrams
Ml-STO. I588(USAF) )OVIAI.(13
MIL STD 1 S89tUSAF) JOVIAL(J731)
M11 S-516791Nany) Tactcal Software Development
MuL 510 ILIS kefterenie Manual t0r the Ada Programming Language

6-2

. .P



in draft form and is due to be released soon. Release of this standard and its

associated DIDs will impact other software acquisition documents; therefore, these

standards are the primary focus of review and detailed change recommendations.

DOD-STD-SQS was released in draft form as DOD-STD-SQAM, but, due to industry

review comments, it is scheduled to be rewritten. Only general change recommenda-

tions are included for this standard.

The next step was to review the candidate list of documents to determine which ones

affect software quality during the acquisition process. The list was narrowed for a

more detailed review where recommended changes were formulated. The final result

was the recommended revisions in the following sections.

6.2 REVIEW ANALYSIS

We anticipate that QM technology will be applied only to selected contracts during the

next few years as part of a validation process and that recommended changes to policy

* formally implementing QM technology will not be made immediately. Therefore,

. other policy changes likely to occur during this period should be taken into account.

If changes were to be made today, the primary focus would be on AFR 800-14, MIL-

. STD-490, MIL-STD-483, MIL-S-52779, and MIL-STD-1521A. But the two proposed

*'i DOD software standards change this focus. DOD-STD-SDS is expected to be released

in January, 1985 and DOD-STD-SQS possibly one year later. Together, they should

include all software development requirements to be imposed on contractors. The

* following paragraphs discuss affects of these two DOD standards on each of the

*. documents named above.

AFR 800-14 is the primary regulation directing Air Force personnel in software

acquisition. Changes to this regulation are required to direct Air Force personnel to

implement QM technology. This regulation is already in an update process due to

other policy changes and will undergo even further changes due to DOD-STD-SDS. It

may be two years before this regulation is updated and released. In the interim, Air

Force System Command (AFSC) and Air Force Logistics Command (AFLC) will issue a

* joint letter directing the use of DOD-STD-SDS in lieu of policy in AFR 800-14.

Changes caused by DOD-STD-SDS will be significant and will affect those areas that

6-3



Z- would require change to implement QM technology. Therefore, specific changes to

AFR 800-14 are not recommended at this time. General recommendations are made -

* in the next section that should be considered when updating AFR 800-14.

MIL-STD-490 includes information about type (A, B, C, D, and E) specifications. Of

particular interest are sections on the B-5, Computer Program Development Specifi-

cation, and C-5, Computer Program Product Specification. These sections and

references to them are being modified to be consistent with DOD-STD-SDS. The type
1B-5 will become software development specification and will include the software " ."-

requirements specification and the interface requirements specification. The type

C-5 will become software product specification and will include the software top-level -

design document, software detailed design document, data base design document, and

interface design document. References will be made to the DIDs in DOD-STD-SDS for

content and format descriptions. Because of these modifications, no changes will be

required to MIL-STD-490 to implement QM technology. >-

MIL-STD-483 presently contains appendices describing CPCI specifications. Changes

are being made to make MIL-STD-483 consistent with DOD-STD-SDS. Several .. -.

appendices are being deleted (concerning software specifications) because content

information is either inconsistent or redundant with information contained in DOD-..
STD-SDS and its associated DIDs. Because of these modifications, no further changes .

will be required in order to implement QM technology.

MIL-S-52779 is expected to be replaced by DOD-STD-SQS and will not be imposed on

contractors in the future. Therefore, changes to MIL-S-52779 are unnecessary.

MIL-STD-1521A addresses technical reviews and audits. The proposed update (MIL- ijjjji1

STD-1521B) has been modified to incorporate two new reviews and additional informa-

tion pertaining to other reviews. New sections have been added for the software

specification review (SSR) and test readiness review (TRR) required by DOD-STD-SDS.

Major modifications have been made to sections covering the system design review . .

(SDR), preliminary design review (PDR) and critical design review (CDR) to

accommodate the evolution of information required by DOD-STD-SDS. QM technology

recommends reviewing certain data at these reviews. Thus, some changes to the

updated MIL-STD-1521B are required. .

.. 6-4

":- ; .:. - .. .' . ".i , ... ' -. . . ... - . . . .- -: .., ' .' .. --" .
.- " -,', .,, ,," ,,: - " - : " " " " " " ' " " " ' " "" " "" ' "". "'" '." '. ' "" "" ".. ." "'". ." °'" " ". "4"" "



6.3 DETAILED RECOMMENDED CHANGES

DOD-STD-SDS and DOD-STD-SQS and their associated DIDs are the primary focus for

recommended changes to implement QM technology. General recommendations are

included for other documents. The list of documents recommended for change is

shown in Table 6.3-1.

6.3.1 DOD-STD-SDS

Quantitative quality factor requirements should be specified at the highest

development level by the program office. The contractor's responsibility is to ensure

that the requirements are flowed down to the CSCI level as appropriate and to define

a methodology that will be used to demonstrate compliance with requirements.

Specification of requirements will be ensured by DOD-STD-SDS, while the definition

of a methodology to show compliance will be required by DOD-STD-SQS. The

following changes are recommended to DOD-STD-SDS.

a. Section 5.1: Rewrite the first sentence as follows, "The contractor shall establish

a complete set of functional, performance, interface and quantitative quality .

requirements for each CSCI."

b. Section 5.1.1.4: Add after item (4), "(5) the specification of quantitative quality

requirements," and change item (5) to item (6).

c. Section 5.1.3: Change "and interface requirements" in the second sentence to read,

"interface, and quality requirements . .

d. Section 5.6: Add the following section, "Section 5.6.1.4 The contractor shall

demonstrate compliance with the quality requirements in accordance with the

Software Quality Assurance Plan." It is recognized that the software quality

assurance plan may be renamed the software quality program plan or software

quality evaluation plan. This recommended change should be modified

appropriately.

e. Section 5.8: In item (2), insert before "evaluation" the word "quantitative".

6-5

. ..- . 7 * -. - . -. ... *.%... * r ° . .. .



.- .-- -~-..- ~~, -. -. -6; 1 -4 T'- -170. -. -7 07 -W- MIL Z.. - .

Table 6.3-1 Documentation Recommended for Revision

TYPE NUMBER TITLE

REGULATION AFR 800O- 14Vol It Acquisition and Support Procedures for Computer
Resources in Systems and AFSC SUPPLEMENI to AFR 800.14

MIL-STO 152 t"d Technical Reviews and Audits for Systems, Equipment, and
Computer Programs

4STANDARD DOO-STD-SOS Defense System Software Development (Draft)
DOr3-STD.SQ5 Software Quality Standard (Draft)

DI S-X t~t System/Segment Specification

DID DI-R-X10S Software Quality Assurance Plan
Df-E-Xt07 Software Requirement Specification

ASD-7R.78-7 Airborne Systems Software Acquisition Engineering-
Guidebooks: Reviews and Audits

ASD-TR-77-(?) Software Acquisition Engineering Guidebook
Series; Reviews and Audits.

GUIDEBOOK ESD-TR-78-117 Software Aquisition Management
Guidebooks: Reviews and Audits

ASD-TR-78-8 Airborne Systems Software Aquisition Engineering
Guidebooks: Quality Assurance.

ASD.TR-78.47 Software Acquisition Engineering Guidebook I
Series: Software Quality Assurance4

ESD-TR-77-255 Software Acquisition Management
Guidebooks; Software Quality Assurance

6-6 ...

%%%5



P.- f. Section 5.8.2: Insert the word "quantitative" prior to "system" in the first and

second sentences.

g. Section 5.8.2a: Rewrite to read "That quantitative quality requirements for

factors such as efficiency, integrity, reliability, survivability, usability, correct-

ness, maintainability, verifiability, flexibility, portability, expandability, reusabil-

ity, and interoperability have been established."

6.3.2 DI-S-XIOI System/Segment Specification

Section 3.4.3: Replace with the following, "Additional Quality Factors. This

paragraph shall specify additional quality factor requirements, not mentioned in prior

paragraphs, in quantitative terms and any specific conditions under which the

requirements are to be met."

6.3.3 DI-R-XI05 Software Quality Assurance Plan

This DID will be rewritten as the software quality program plan or software quality

evaluation plan. Specific changes cannot be recommended at this time. Either way, a

change should be made to require the contractor to define the methodology and

framework that will be used to demonstrate compliance with the quantitative q'jality

requirements. A specific QM methodology should not be imposed on the contractor.

Therefore, the contractor should be required to define that methodology which will be

used in this document.

6.3.4 DI-E-X107 Software Requirements Specification

This DID is presently written to encourage the specification of quality factors in

quantitative terms. If the final version does not differ from this version in Section

3.7, only a minor change will be required as follows:

Section 3.7.7: Change "Testability" to "Verifiability".

6-7

6-7-

".. " -. i f '.? i.  " i . . il ..'- .' -. - . "- ' -
. . - - . . ... . - - . . . . " . ,, " ..

i' 'i" " ' " "~~~~~~~~~~~. . ,'.. ., '.. .-.. . . . ... .. -". ... '"'" "' "".... ... -* *. " *'"



6.3.5 DOD-STD-SQS

This proposed DOD software standard will require the contractor to establish a

software quality program. According to recent decisions, DOD-STD-SDS will cover -

that part of the software quality program that affects software development, while

DOD-STD-SQS will cover evaluation activities. The next draft of DOD-STD-SQS is

due out for review in January, 1985.

Certain changes should be made to DOD-STD-SQS to implement QM technology. A

cyrequirement should be added to identify the specific metrics and framework that the .
contractor will use to show compliance with the quality requirements for software. A."

proposed data item description (DID) has been developed as part of this contract to

report results of evaluations at various points in time. This DID, Software Quality

Evaluation Report (see App. C), should be approved to be used with DOD-STD-SQS.

The standard should also be modified to discuss use of this DID throughout the life

cycle and the specific information to be evaluated at each review point. Quality

factors should be updated to be consistent with the list in this report. These changes

should be consistent with DOD-STD-SDS so that the two DOD software standards

complement each other.

6.3.6 MIL-STD-1521B

This military standard addresses technical reviews and audits conducted during the

software development process. It is expected that MIL-STD-1521B will be released

'vith only minor changes to its current draft form. Thus, the following recommended

changes are to the proposed revision B, rather than MIL-STD-1521A.

a. Section 10.3.1.4 (SRR): Add item, "d. The quality factors to be included in the

requirements and the quantitative values for them."

b. Section 20.1 (SDR): Add "and quality" after the word "test" in the first sentence.

.I

c. Section 20.3.1 (SDR): Change item g to read, "Hardware and software quality

requirements."

S

6-8

:- . . i. - .. .. - .. - • . ... .. • . . -. .. . . .



d. Section 20.3 (SDR): Add item "20.3.14 Review the software quality evaluation

report to ensure that applicable quality requirements are being satisfied."

e. Section 30.2 (SSR'): In item g, change "testability" to "verifiability, survivability,

expandabi lity."

f. Section 30.2 (SSR): Add item "h. The software quality evaluation report for

evaluation against the quality requirements."

g. Section 40.2.2 (PDR): Add item "n. Review the software quality evaluation report

for evaluation against the quality requirements."

h. Section 50.2.2 (CDR): Add item "e. The software quality evaluation report for

evaluation against the quality requirements."

i. Section 70.4.12 (FCA): Add item "1g. The software quality evaluation report shall

be reviewed to ensure that all quality requirements for software have been met."

6.3.7 AFR 800-14

As was stated earlier, this regulation will be changed extensively to be made -

consistent with DOD-STD-SDS. When QM technology is implemented, the following

general changes are recommended to the revised AFR 800-14.

Volume I covers general policy on management of computer resources. An item should

be added to Section 3 directing that a trade-off study be conducted on quality factors

for software so that quality requirements can be specified at the system level in

* quantitative terms based on the framework and methodology to be implemented.

* Volume 11 defines detailed procedures to be used in the software acquisition process by

* Air Force personnel. Changes should eventually be made to the information contained

in the present Sections 2-3, 2-4, and 2-8 Lo generally &--scribe the additional activities

in the various system acquisition and software development phases that are a part of*

using QM technology. This includes the specification of quality factors (and related

trade studies) and the quantitative evaluation of quality levels at various points in the

acquisition life cycle.

6-9



In terms of planning, the information in present Sections 3-2, 3-4, 3-6, and 3-7 should

be modified to identify the specification of quality factors for the software in

quantitative terms and to describe trade studies conducted in order to determine

requirements for quality factors. It is assumed that Section 3-9 (Computer Program

Development Plan) will be removed or revised to be consistent with DOD-STD-SDS.

The last changes should be made to information presently in Section 4-9 (Formal

. Technical Reviews) to incorporate appropriate changes to be consistent with those . -

recommended to MIL-STD-1521 in Section 6.3.6 of this report.

6.3.8 Guidebooks

Changes to guidebooks are not required to implement QM Technology as they are not
policy documents. They are used to teach new Air Force personnel about policies. As

such, it would be useful, though, to update certain guidebooks when implementing QM

technology. It is assumed that these guidebooks will be updated in the near future to

*O reflect changes resulting from the implementation of DOD-STD-SDS and DOD-STD-

SQS. These modifications will be extensive for the guidebooks addressing quality

assurance.

Three of the guidebooks address reviews and audits. These three guidebooks will

require minor updates to incorporate information reflecting changes in MIL-STD-1521

resulting from implementation of QM technology. Specific information to be added to

these guidebooks include a discussion of quantitative requirements for quality factors

and use of the Software Quality Evaluation Report at each of the various formal

reviews as appropriate (SDR, SSR, PDR, CDR, and FCA). The three revised

guidebooks should be evaluated for appropriate changes when QM technology is

implemented.

* The other three guidebooks address software quality assurance and are based heavily

on AFR 800-14 and MIL-S-52779. With the revisions to AFR 800-14 and the

replacement of MIL-S-52779 due to DOD-STD-SDS and DOD-STD-SQS, these guide-

- books will probably be completely rewritten. These guidebooks will then discuss an

entire software quality program consistent with the two new DOD software standards.

Some general information should be incorporated into these guidebooks about QM

technology along with references to the two new guidebooks developed under this

6

...: 6-10 .



contract (see Vol. II and Vol. I1): Software Quality Specification Guidebook and

Software Quality Evaluation Guidebook.

General subjects that should be covered in summary form include (1) a discussion about

using QM technology in the acquisition process, (2) responsibilities for specification

and evaluation of quality factors, (3) initial planning to include a software quality

metric framework and trade studies necessary to determine requirements, (4) use of S -

the Software Quality Evaluation Report at various review points, (5) an overall .

orientation of how QM technology fits into each life-cycle phase, (6) how it is to be

applied to subcontractors, (7) identification of quality factors and a definition for

each, and (8) the relationship between existing guidebooks and the two new guidebooks S

developed under this contract. Detailed directions concerning which quality factors to

include, how to specify quantitative requirements for them, and how to evaluate them

using QM technology are included in the new guidebooks. These two guidebooks will

complement the existing ones.

6-11

* . . .. . .



APPEN DIX A

METRIC WORKSHEETS

(The contents of this appendix are in Vol. III., App. A)

A-1 .. *



APPENDIX B

FACTOR SCORESKEETS

(The contents of this appendix are in Vol. 111, App. B.)

B-1

..........................



APPENDIX C

SOFTWARE QUALITY EVALUATION REPORT

(The contents of this appendix are in Vol. 11, App. C and Vol. III, App. C.)

C-1



* stce acusto 
ao~wi 

6~p~ jCmad oto

etmn* Roe pAira Developmt Ci.inaen, te
comuc.tio acqwiciZ on p-w t gL udance and Command, Cswt-roveConn.ce 6 tound nd ZZaen6ce oCbje cti. tien daa

wZttec-tion and handting, in6o'trmation sy.6em technotogq,
* * ~sotid state sc-iencz, etecP..omagneticz and eZecttonic

%retiabiLty, ma.&.tainabL ity and compatibZCity.

4



- -Iv 7- 47 07- I-~~-

FILMED

* 6-85

DTIC


